Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Cationic surfactants ammonium compound

MPIC Cations Ion-pair formation neutral HC1 Hexane-sulfonic acid Octane-sulfonic acid In addition to the cations listed under HPIC alkylamines, alkanolamines, quaternary ammonium compounds, cationic surfactants, sulfonium compounds, phosphonium compounds... [Pg.348]

Background. Another form of colloid titration for estimating cationic (quaternary ammonium) compounds is based on a potentiometric procedure and utilizes an eleetrode that is specific to the titrating anionic surfactant chosen. The theory is that the cationic material complexes stoichiometrically with the anionic surfactant. [Pg.512]

W. M. Linfteld, "Straight-Chain Alkyl ammonium Compounds," in E. Jungermaim, ed.. Cationic Surfactants, Vol. 4, Marcel Dekker, Inc., New York,... [Pg.224]

Higher order aUphatic quaternary compounds, where one of the alkyl groups contains - 10 carbon atoms, exhibit surface-active properties (167). These compounds compose a subclass of a more general class of compounds known as cationic surfactants (qv). These have physical properties such as substantivity and aggregation ia polar media (168) that give rise to many practical appHcations. In some cases the ammonium compounds are referred to as iaverse soaps because the charge on the organic portion of the molecule is cationic rather than anionic. [Pg.377]

Cationic, anionic, and amphoteric surfactants derive thek water solubiUty from thek ionic charge, whereas the nonionic hydrophile derives its water solubihty from highly polar terminal hydroxyl groups. Cationic surfactants perform well in polar substrates like styrenics and polyurethane. Examples of cationic surfactants ate quaternary ammonium chlorides, quaternary ammonium methosulfates, and quaternary ammonium nitrates (see QuARTERNARY AMMONIUM compounds). Anionic surfactants work well in PVC and styrenics. Examples of anionic surfactants ate fatty phosphate esters and alkyl sulfonates. [Pg.297]

Quaternary ammonium compounds are cationic surfactants that bind well to anionic surfaces like the protein in hair. The ammonium end sticks to the hair, leaving the long fatty end of the molecule to act as a lubricant. They are slightly conductive, so they reduce the buildup of static electricity. Quats, as they are sometimes called, include compounds like stearalkonium chloride, disteardimonium chloride, quaternium-5, or quaternium-18, polyquaternium-10 and they are all similar in form and function to cetrimonium chloride. These compounds are also widely used as fabric softeners, for all of the same reasons they make good hair conditioners. They are also used to thicken the shampoo. [Pg.204]

Cationic surfactants Quaternary ammonium compounds (QACs)h ... [Pg.145]

Taking into consideration its physico-chemical properties, removal efficiencies, low biodegradability, predicted environmental levels, toxicity, and the need to provide sufficient safety margins for aquatic organisms, the demand for alternative cationic surfactants arose. Since 1991, DTDMAC has been replaced in some European countries due to producer s voluntary initiatives with new quaternary ammonium compounds, the esterquats. These contain an ester function in the hydrophobic chain (Table 1.3) that can be easily cleaved, releasing intermediates that are susceptible to ultimate degradation [24-26]. The effects of the phasing-out and replacement of DTDMAC can be demonstrated by the results of a Swiss study, where the surfactant... [Pg.71]

For the cationic surfactants, the available HPLC detection methods involve direct UV (for cationics with chromophores, such as benzylalkyl-dimethyl ammonium salts) or for compounds that lack UV absorbance, indirect photometry in conjunction with a post-column addition of bromophenol blue or other anionic dye [49], refractive index [50,51], conductivity detection [47,52] and fluorescence combined with postcolumn addition of the ion-pair [53] were used. These modes of detection, limited to isocratic elution, are not totally satisfactory for the separation of quaternary compounds with a wide range of molecular weights. Thus, to overcome the limitation of other detection systems, the ELS detector has been introduced as a universal detector compatible with gradient elution [45]. [Pg.126]

Equidistant or clustered signals, characteristic of some anionic, nonionic or cationic surfactants (cf. Fig. 2.5.1(a) and (b). So the presence of non-ionic surfactants of alkylpolyglycolether (alcohol ethoxylate) type (AE) (structural formula C H2 i i-0-(CH2-CH2-0)x-H) could be confirmed in the formulation (Fig. 2.5.1(a)) applying APCI-FIA-MS in positive mode. AE compounds with high probability could also be assumed in the heavily loaded environmental sample because of the patterns of A m/z 44 equally spaced ammonium adduct ions ([M + NH4]+) shown in its FIA-MS spectrum in Fig. 2.5.1(b). [Pg.158]

To recognise ion suppression reactions, the AE blend was mixed together either (Fig. 2.5.13(a) and (b)) with the cationic quaternary ammonium surfactant, (c, d) the alkylamido betaine compound, or (e, f) the non-ionic FADA, respectively. Then the homologues of the pure blends and the constituents of the mixtures were quantified as presented in Fig. 2.5.13. Ionisation of their methanolic solutions was performed by APCI(+) in FIA-MS mode. The concentrations of the surfactants in the mixtures were identical with the surfactant concentrations of the blends in the methanolic solutions. Repeated injections of the pure AE blend (A 0-4.0 min), the selected compounds in the form of pure blends (B 4.0—8.8 min) and their mixtures (C 8.8— 14.0 min) were ionised and compounds were recorded in MID mode. For recognition and documentation of interferences, the results obtained were plotted as selected mass traces of AE blend (A b, d, f) and as selected mass traces of surfactant blends (B a, c, e). The comparison of signal heights (B vs. C and A vs. C) provides the information if a suppression or promotion has taken place and the areas under the signals allow semi-quantitative estimations of these effects. In this way the ionisation efficiencies for the pure blends and for the mixture of blends that had been determined by selected ion mass trace analysis as reproduced in Fig. 2.5.13, could be compared and estimated quite easily. [Pg.181]

Quaternary fluorinated alkyl ammonium compounds The fluorine-containing cationic surfactants of quat type with the general formula C F2 , 1-S02-NH-CH2-CH2-CH2-N (CH3)3 X (n = 8) (Fig. 2.12.1(d)) were examined by FIA—MS using APCI and ESI in the positive and negative modes. The APCI(- -/—) ionisation resulted in a dealkylation at the nitrogen with ions at m/z 585 or 583, respectively. The alkyl chain of this compound contained the moiety C8Fi7. The ions generated under APCI conditions were characterised as dealkylation products—m/z 585 [M — CH2]+ or m/z 583 [M — H— CH3] —as reported in the literature [35,37]. [Pg.394]

Fig. 2.12.6. Identification of esterquat compounds FIA-APCI-MS-MS(+) (CID) product ion mass spectrum of selected [M — RCO]+ base peak ion of cationic surfactant blend of di-hydrogenated tallowethyl hydroxyethyl ammonium methane sulfate type (mlz 692 general formula (R(C0)0CH2CH2)2-N (CH3)-CH2CH2(0H)CH30S03) fragmentation behaviour under CID... Fig. 2.12.6. Identification of esterquat compounds FIA-APCI-MS-MS(+) (CID) product ion mass spectrum of selected [M — RCO]+ base peak ion of cationic surfactant blend of di-hydrogenated tallowethyl hydroxyethyl ammonium methane sulfate type (mlz 692 general formula (R(C0)0CH2CH2)2-N (CH3)-CH2CH2(0H)CH30S03) fragmentation behaviour under CID...
ESI(+), however, mainly produced the [M]+ ions at mlz 599 as well as a smaller number of dealkylated ions [M — CH2]+ at 585 (cf. Fig. 2.12.7), whereas ESI(—) predominantly produced the mlz 583 [M — H—CH3] ion, which was also found under APCI(—) conditions. This compound was the first type of cationic surfactants that could be ionised in the negative mode, even though it contained ammonium nitrogen [37]. [Pg.396]

Quaternary ammonium cationic surfactants, such as DTDMAC, were determined in digested sludge by using supercritical fluid extraction (SFE) and FIA-ESI-MS(+) after separation by normal phase LC. Standard compounds—commercially available DTDMAC— were used to check the results. The DTDMAC mixture examined showed ions at m/z 467, 495, 523, 551, and 579 all equally spaced by A m/z 28 (-CH2-CH2-) resulting from the ionisation of compounds like RR N (CH3)2 X (R = / RO as shown in Fig. 2.12.11(a) and (b) [22],... [Pg.401]

Various classes of cationic surfactants, including quats, esterquats, alkyl ethoxy amines, quaternary perfluoroalkyl ammoniums and gemini surfactants have been analysed extensively with LC—MS and LC—MS—MS techniques, and their spectra have been fully characterised. Different ionisation methods have been applied for the detection of such surfactants, including API techniques (APCI and ESI) in negative and positive modes of operation. In addition, detailed examples regarding MS—MS fragmentation of these compounds have been reported and presented in this chapter. [Pg.409]

The only cationic surfactant (Fig. 23) found in any quantity in the environment is ditallow dimethylammonium chloride (DTDMAC), which is mainly the quaternary ammonium salt distearyldimethylammonium chloride (DSDMAC). The organic chemistry and characterization of cationic surfactants has been reported and reviewed [330 - 332 ]. The different types of cationic surfactants are fatty acid amides [333], amidoamine [334], imidazoline [335], petroleum feed stock derived surfactants [336], nitrile-derived surfactants [337], aromatic and cyclic surfactants [338], non-nitrogen containing compounds [339], polymeric cationic surfactants [340], and amine oxides [341]. [Pg.51]

Paraquat (1,1 dimethyl, 4,4 bipyridyl) is a nonselective contact herbicide. It is used almost exclusively as a dichloride salt and usually is formulated to contain surfactants. Both its herbicidal and toxicological properties are dependent on the ability of the parent cation to undergo a single electron addition, to form a free radical that reacts with molecular oxygen to reform the cation and concomitantly produce a superoxide anion. This oxygen radical may directly or indirectly cause cell death. Diquat, l,T-ethylene-2,2 -dipyridylium, is a charged quaternary ammonium compound often found as the dibromide salt. The structure of diquat dibromide and that of the closely related herbicide paraquat can be seen in Fig. 4.5. [Pg.77]

Cationic surfactants produce a positively charged surfactant ion in solution and are mainly quaternary nitrogen compounds such as amines and derivatives and quaternary ammonium salts. Owing to their poor cleaning properties, they are little used as detergents rather their use is a result of their bacteriocidal qualities. Relatively little is known about the mechanisms of biodegradation of these compounds. [Pg.308]

Quaternary ammonium salts are well-known cationic surfactants and popular phase-transfer (FT) catalysts. In addition, these salts exhibit both antimicrobial activities and antielectrostatic effects. Another useful compound which belongs to the ammonium salt group is chinoline chloride, also known as vitamin B4 it is an essential component that ensures proper functioning of the nervous system and is widely used as a feed additive for livestock. [Pg.21]

Surfactants, emulsifiers Dissolve lipids, disrupt membranes, denature proteins, and inactivate enzymes in high concentrations, and act as wetting agents Cationic detergents are used to sanitize utensils, anionic detergents are used to launder clothes and clean household objects, and quaternary ammonium compounds are sometimes used as an antiseptic on skin... [Pg.162]

Quaternary ammonium compounds. These compounds are cationic surfactants if they contain a hydrocarbon chain of sufficient length. Example cetyltrimethyl-ammonium bromide, CH3(CFl2)isN+(CH3)3Br. See also Cationic Surfactant. [Pg.389]

Gas hydrate inhibitors. Gas hydrates, solid water clathrates containing small hydrocarbons, are problematic for oil and gas production because they can precipitate and cause line blockage. Simple cationic surfactants containing at least two butyl groups were previously developed to inhibit formation of gas hydrate precipitates in gas production lines [87]. However, similar to the situation with cationic drag reduction additives, poor toxicity profiles prevent widespread commercial acceptance. Ester quaternaries with structures somewhat similar to those used in fabric care have been claimed as hydrate inhibitors [88 ]. Additionally, certain alkylether quaternary compounds, e.g. C12-C14 alkyl polyethoxy oxypropyl tributyl ammonium bromide, were shown to have hydrate inhibition properties [89]. [Pg.165]

Cationic Surfactants. Like the anionic surfactants, cationic surfactants also dissociate in an aqueous medium. However, the head (hydrophilic portion) is a cation, which is the carrier of the surface-active properties. Examples are the quaternary ammonium compounds. [Pg.3024]


See other pages where Cationic surfactants ammonium compound is mentioned: [Pg.403]    [Pg.378]    [Pg.383]    [Pg.128]    [Pg.219]    [Pg.256]    [Pg.95]    [Pg.236]    [Pg.251]    [Pg.265]    [Pg.150]    [Pg.382]    [Pg.493]    [Pg.495]    [Pg.1116]    [Pg.70]    [Pg.44]    [Pg.385]    [Pg.446]    [Pg.145]    [Pg.505]    [Pg.115]    [Pg.59]    [Pg.219]    [Pg.15]   
See also in sourсe #XX -- [ Pg.365 , Pg.366 , Pg.367 ]




SEARCH



Ammonium compounds

Cation ammonium cations

Cationic ammonium surfactants

Cationic surfactants compounds

Surfactants compounds

© 2024 chempedia.info