Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Ionisation Methods

Alternative approaches consist in heat extraction by means of thermal analysis, thermal volatilisation and (laser) desorption techniques, or pyrolysis. In most cases mass spectrometric detection modes are used. Early MS work has focused on thermal desorption of the additives from the bulk polymer, followed by electron impact ionisation (El) [98,100], Cl [100,107] and field ionisation (FI) [100]. These methods are limited in that the polymer additives must be both stable and volatile at the higher temperatures, which is not always the case since many additives are thermally labile. More recently, soft ionisation methods have been applied to the analysis of additives from bulk polymeric material. These ionisation methods include FAB [100] and LD [97,108], which may provide qualitative information with minimal sample pretreatment. A comparison with FAB [97] has shown that LD Fourier transform ion cyclotron resonance (LD-FTTCR) is superior for polymer additive identification by giving less molecular ion fragmentation. While PyGC-MS is a much-used tool for the analysis of rubber compounds (both for the characterisation of the polymer and additives), as shown in Section 2.2, its usefulness for the in situ in-polymer additive analysis is equally acknowledged. [Pg.46]

Accurate mass measurements. . 355 6.2.9 Desorption/ionisation methods. 383... [Pg.349]

Mass spectrometry has a number of features and advantages that can make it a very valuable tool for the identification of organic additives in polymers (Table 6.2). The range of products that can be studied is limited by the ionisation method used and the performance of the mass spectrometer. Mass spectrometry... [Pg.349]

There are several means of introducing samples into the mass spectrometer. The inlet system to be used depends mainly on the nature of the sample (volatility, molecular weight, polarity and thermal stability), and the ionisation method (in particular, the gas pressure in the ion source). The most common inlet systems are ... [Pg.352]

Principles and Characteristics Ionisation processes are the basis for mass-spectrometric detection. Each of the ionisation techniques occupies its own position in mass spectrometry. The optimum performance of any ionisation method (and therefore the result) will depend critically on the characteristics and reliability of the mass spectrometer. Ionisation may occur in the gas, liquid or condensed phase, and may be either hard or soft , i.e. with or without extensive... [Pg.357]

Obvious practical requirements are that the ionisation method has to be available needs to be compatible with the mass spectrometer being used and able to handle the chemical compound class of investigation. Table 6.10 shows the compatibility of ionisation type, and mass spectrometer. [Pg.357]

Electron impact ionisation (El) stands for extensive fragmentation, but also produces molecular ions. The other ionisation methods shown in Table 6.10 mainly generate quasi-molecular ions for various compound classes. Protonation of organic compounds is one of the most fundamental processes of Cl, FAB and ESI mass spectrometry. Apart from electrospray (ESI), which... [Pg.357]

Table 6.10 Ionisation methods and suitability for different sample classes... Table 6.10 Ionisation methods and suitability for different sample classes...
Ionisation method Principal ions detected (+/—) Mass spectrometer" Sample classes Approximate mass limit (Da)... [Pg.358]

Typical gas phase ionisation methods (vaporisation followed by ionisation) are El, Cl, FI, MPI desorption/ionisation methods for nonvolatile samples (ions formed in the condensed phase) are FD, PD, SIMS, FAB, DCI, TSP, LD-SIMS, MALD, ESP/ISP. [Pg.358]

For non-volatile sample molecules, other ionisation methods must be used, namely desorption/ionisation (DI) and nebulisation ionisation methods. In DI, the unifying aspect is the rapid addition of energy into a condensed-phase sample, with subsequent generation and release of ions into the mass analyser. In El and Cl, the processes of volatilisation and ionisation are distinct and separable in DI, they are intimately associated. In nebulisation ionisation, such as ESP or TSP, an aerosol spray is used at some stage to separate sample molecules and/or ions from the solvent liquid that carries them into the source of the mass spectrometer. Less volatile but thermally stable compounds can be thermally vaporised in the direct inlet probe (DIP) situated close to the ionising molecular beam. This DIP is standard equipment on most instruments an El spectrum results. Techniques that extend the utility of mass spectrometry to the least volatile and more labile organic molecules include FD, EHD, surface ionisation (SIMS, FAB) and matrix-assisted laser desorption (MALD) as the last... [Pg.359]

Table 6.10 reports the main areas of application of the various ionisation methods and the principal ions detected. A breakdown of MS techniques applied to various types of analytes is as follows thermally stable, low-MW Cl, El thermally instable, low-MW APCI (FLA, LC-MS), ESI and high-MW DCI, FD, FAB, LD, ESI (FLA, LC-MS, CZE-MS). Soft ionisation techniques such as FL, FAB and LD are useful for the detection of non-volatile, sometimes oligomeric, polymer additives. Recent developments in ionisation techniques have allowed the analysis of polar, ionic, and high-MW compounds, previously not amenable to mass-spectrometric analysis. Figure 6.4 shows the applicability of various atmospheric pressure ionisation techniques in terms of molar mass and polarity. [Pg.359]

Figure 6.5 Comparison of the selectivity of ionisation methods in mass spectrometry... Figure 6.5 Comparison of the selectivity of ionisation methods in mass spectrometry...
Principles and Characteristics Electron impact (El) ionisation is the original ionisation method (1918). Before 1980, mass spectrometry was merely restricted to electron impact (El), with chemical ionisation (Cl) being applied mainly for those samples which resist generation of satisfactory El data. Nowadays, El is still a widely used universal and nonselective ionisation method. In El, the sample is introduced as a vapour... [Pg.360]

CI-MS and EI-MS address the same compound class. Cl is used mainly when the molecule fragments so completely in El mode that no M+" ions are observed or when the problem is only knowledge of the molecular weight of the sample component. In fact, El and Cl are usually both carried out on the same sample, as the two ionisation methods produce complementary information of value for the determination of structure and MW of a compound. The detection limits of Cl tend to be better than El, as the latter technique divides the ion current between molecular and fragment ions. A few ng of sample may be detected. [Pg.363]

In a study on the identification of organic additives in rubber vulcanisates using mass spectrometry, Lattimer et al. [22] used direct thermal desorption with three different ionisation methods El, Cl and FI. Also, rubber extracts were examinated directly by four ionisation methods (El, Cl, FD and FAB). The authors did not report a clear advantage for direct analysis as compared to analysis after extraction. Direct analysis was a little faster, but the extraction methods were considered to be more versatile. [Pg.364]

With the introduction of FAB in 1981, interest in the development of both DCI and FD sharply decreased. Indeed, on highly polar substances FAB provides more valuable results than DCI or FD and a more stable signal. On the other hand, nonpolar substances with high molecular weight are not amenable to FAB, since they are poorly ionised and also they cannot be easily dissolved in the most common FAB matrices. Thus, alternative ionisation methods have to be employed with such compounds. DCI-MS of nonvolatile compounds has been reviewed [40]. [Pg.365]

Principles and Characteristics The ion-molecule reaction (IMR) ionisation method belongs to the group of ion beam techniques. The basic structure of these instruments consists of ... [Pg.366]

Applications Early MS work on the analysis of polymer additives has focused on the use of El, Cl, and GC-MS. The major drawback to these methods is that they are limited to thermally stable and relatively volatile compounds and therefore are not suitable for many high-MW polymer additives. This problem has largely been overcome by the development of soft ionisation techniques, such as FAB, FD, LD, etc. and secondary-ion mass spectrometry. These techniques all have shown their potential in the analysis of additives from solvent extract and/or from bulk polymeric material. Although FAB has a reputation of being the most often used soft ionisation method, Johlman el al. [83] have shown that LD is superior to FAB in the analysis of polymer additives, mainly because polymer additives fragment extensively under FAB conditions. [Pg.370]

FAB-MS has been used for the analysis of lubricant additives, thermally labile or involatile organic compounds, such as macromolecules and dyes, and inorganic compounds. Cationic dyes and dye intermediates, which are typically acid salts, readily yield preformed ions in the FAB matrix solution. They are also very difficult to address by other MS ionisation methods due to their involatility. Lay and Chang [85] used positive ion FAB to characterise a mixture of amine and ketimine cross-linking agents for polymer coatings. Bentz et al. [Pg.370]

Recently, Lattimer et al. [22,95] advocated the use of mass spectrometry for direct analysis of nonvolatile compounding agents in polymer matrices as an alternative to extraction procedures. FAB-MS was thus applied as a means for surface desorption/ionisation of vulcanisates. FAB is often not as effective as other ionisation methods (El, Cl, FI, FD), and FAB-MS is not considered particularly useful for extracted rubber additives analysis compared to other methods that are available [36], The effectiveness of the FAB technique has been demonstrated for the analysis of a live-component additive mixture [96]. [Pg.371]

Table 6.16 summarises the main characteristics of FI-MS. FT uses high voltages and was once restricted to sensitive double-focusing magnetic sector instruments of relatively high cost. Field ionisation is considered to be the softest ionisation mode. The reproducibility of the non-standard techniques, such as FI-MS and FD-MS, is less well assessed than that of EI-MS. A noticeable drop in FI use occurred after the mid-1980s because of the advent of FAB and other desorption/ionisation methods. FI-MS is only used in a few laboratories worldwide. [Pg.373]

Applications FI-MS and FD-MS have some attractive features that make them both complementary to other desorption/ionisation methods and unique in their applications. FI has found wide application mainly for the... [Pg.373]

Coupled on-line techniques (GC-MS, LC-MS, MS/ MS, etc.) provide for indirect mixture analysis, while many of the newer desorption/ionisation methods are well suited for direct analysis of mixtures. DI techniques, applied either directly or with prior liquid chromatographic separations, provide molecular weight information up to 5000 Da, but little or no additional structural information. Higher molecular weight (or more labile) additives can be detected more readily in the isolated extract, since desorption/ionisation techniques (e.g. FD and FAB) can be used with the extract but not with the compounded polymer. Major increases in sensitivity will be needed to support imaging experiments with DI in which the spatial distribution of ions in the x — y plane are followed with resolutions of a few tens of microns, and the total ion current obtained is a few hundreds of ions. [Pg.385]

Soft desorption/ionisation methods are of course crucial for mass-spectrometric analysis of biological macromolecules. [Pg.385]

Table 6.28 Mass-spectrometer types and compatible ionisation methods... Table 6.28 Mass-spectrometer types and compatible ionisation methods...
General Applications The ion trap can be interfaced with ionisation methods that induce ionisation in compounds which are not readily amenable to electron... [Pg.394]

Selection of a suitable ionisation method is important in the success of mixture analysis by MS/MS, as clearly shown by Chen and Her [23]. Ideally, only molecular ions should be produced for each of the compounds in the mixture. For this reason, the softest ionisation technique is often the best choice in the analysis of mixtures with MS/MS. In addition to softness , selectivity is an important factor in the selection of the ionisation technique. In polymer/additive analysis it is better to choose an ionisation technique which responds preferentially to the analytes over the matrix, because the polymer extract often consists of additives as well as a low-MW polymer matrix (oligomers). Few other reports deal with direct tandem MS analysis of extracts of polymer samples [229,231,232], DCI-MS/MS (B/E linked scan with CID) was used for direct analysis of polymer extracts and solids [69]. In comparison with FAB-MS, much less fragmentation was observed with DCI using NH3 as a reagent gas. The softness and lack of matrix effect make ammonia DCI a better ionisation technique than FAB for the analysis of additives directly from the extracts. Most likely due to higher collision energy, product ion mass spectra acquired with a double-focusing mass spectrometer provided more structural information than the spectra obtained with a triple quadrupole mass spectrometer. [Pg.403]

Difficult mixture analysis (ionisation method dependent)... [Pg.408]

Direct solid-state polymer/additive mass analysis has involved various ionisation modes El (Section 6.2.1), Cl (Section 6.2.2), DCI (Section 6.2.2.1), FAB (Section 6.2.4), FI (Section 6.2.5), FD (Section 6.2.6) and LD. Survey mass spectra obtained with soft ionisation methods (FI-MS, CI-MS) provide diagnostic overviews of chemical composition. The supplemental tandem (MS/MS) and atomic composition (AC-MS) techniques are used to make specific identifications of various organic ingredients. Direct analysis of polymer systems for more than a few thousand daltons has only just begun. Ionisation methods employed are FD, ESI and MALDI. Solid-probe ToF-MS (or DI-HRMS) is a breakthrough [188]. [Pg.412]

The ideal mass-spectrometric interface should allow for a range of ionisation methods (Tables 7.23 and 7.24). The ionisation of organic molecules for use with chromatographic outlets include El, Cl, APCI for samples that can be vaporised prior to ionisation alternative ionisation techniques using TSP, ESP or FAB are needed for labile, high-MW or ionic samples. [Pg.455]


See other pages where Ionisation Methods is mentioned: [Pg.549]    [Pg.1001]    [Pg.351]    [Pg.357]    [Pg.360]    [Pg.360]    [Pg.361]    [Pg.378]    [Pg.383]    [Pg.385]    [Pg.385]    [Pg.385]    [Pg.387]    [Pg.390]    [Pg.390]    [Pg.400]    [Pg.405]    [Pg.408]    [Pg.413]    [Pg.454]   
See also in sourсe #XX -- [ Pg.19 ]




SEARCH



Coupled-channels-optical method total ionisation cross section

Direct-probe desorption/ionisation methods

Gas Phase (Hard) Ionisation Methods

Gentle ionisation methods MALDI and ESI

Ionisation

Ionised

Laser ionisation, analytical method

Laser ionisation, analytical method Applications

Lipids ionisation methods

Liquid chromatography ionisation methods

Mass spectrometry ionisation methods

Methods of ionisation

Sterilisation methods ionising radiation

© 2024 chempedia.info