Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Mass-selection

In essence, a guided-ion beam is a double mass spectrometer. Figure A3.5.9 shows a schematic diagram of a griided-ion beam apparatus [104]. Ions are created and extracted from an ion source. Many types of source have been used and the choice depends upon the application. Combining a flow tube such as that described in this chapter has proven to be versatile and it ensures the ions are thennalized [105]. After extraction, the ions are mass selected. Many types of mass spectrometer can be used a Wien ExB filter is shown. The ions are then injected into an octopole ion trap. The octopole consists of eight parallel rods arranged on a circle. An RF... [Pg.811]

Viggiano A A, Arnold S T and Morris R A 1998 Reactions of mass selected cluster ions in a thermal bath gas Int. Rev. Phys. Chem. 17 147-84... [Pg.825]

In the FFR of the sector mass spectrometer, the unimolecular decomposition fragments, and B, of tire mass selected metastable ion AB will, by the conservation of energy and momentum, have lower translational kinetic energy, T, than their precursor ... [Pg.1335]

The same procedure as outlined above can be used to study ion-molecule reactions [15, 34]- Mass-selected ions will react with neutral species inside the trap. The presence of the damping gas means that stable (tliemiodynamic and... [Pg.1350]

In TOF-SARS [9], a low-keV, monoenergetic, mass-selected, pulsed noble gas ion beam is focused onto a sample surface. The velocity distributions of scattered and recoiled particles are measured by standard TOF methods. A chaimel electron multiplier is used to detect fast (>800 eV) neutrals and ions. This type of detector has a small acceptance solid angle. A fixed angle is used between the pulsed ion beam and detector directions with respect to the sample as shown in figure Bl.23.4. The sample has to be rotated to measure ion scattering... [Pg.1805]

Leopold D G, Ho J and Lineberger W C 1987 Photoelectron spectroscopy of mass-selected metal cluster anions. I. Cuji, n = 1 -10 J. Chem. Phys. 86 1715... [Pg.2401]

Cheshnovsky O, Yang S H, Pettiette C L, Craycraft M J and Smalley R E 1987 Magnetic time-of-flight photoeieotron spectrometer for mass-selected negative cluster ions Rev. Sci. Instnim. 58 2131... [Pg.2404]

Cheshnovsky O, Taylor K J, Conceicao J and Smalley R E 1990 Ultraviolet photoeieotron spectra of mass-selected copper clusters evolution of the 3d band Phys. Rev. Lett. 64 1785... [Pg.2404]

The influence of soil ageing on the recovery of POPs from spiked soil samples was also assessed. Spiked lettuce samples were subjected to in vitro gastrointestinal extraction to assess the bioavailability of Endosulfan compounds. All samples (soil and lettuce) were extracted using pressurised fluid extraction and analysed using gas chromatography with mass selective detection. [Pg.197]

Figure 2.12 Schematic representation of an on-line SPE-GC system consisting of three switching valves (VI-V3), two pumps (a solvent-delivery unit (SDU) pump and a syringe pump) and a GC system equipped with a solvent-vapour exit (SVE), an MS instrument detector, a retention gap, a retaining precolumn and an analytical column. Reprinted from Journal of Chromatography, AIIS, A. J. H. Eouter et al, Analysis of microcontaminants in aqueous samples hy fully automated on-line solid-phase extraction-gas chromatography-mass selective detection , pp. 67-83, copyright 1996, with permission from Elsevier Science. Figure 2.12 Schematic representation of an on-line SPE-GC system consisting of three switching valves (VI-V3), two pumps (a solvent-delivery unit (SDU) pump and a syringe pump) and a GC system equipped with a solvent-vapour exit (SVE), an MS instrument detector, a retention gap, a retaining precolumn and an analytical column. Reprinted from Journal of Chromatography, AIIS, A. J. H. Eouter et al, Analysis of microcontaminants in aqueous samples hy fully automated on-line solid-phase extraction-gas chromatography-mass selective detection , pp. 67-83, copyright 1996, with permission from Elsevier Science.
A. J. H. Louter, C. A. van Beekvelt, P Cid Montanes, J, Slobodnik, J. J. Vreuls and U. A. Th Brinkman, Analysis of microcontaminants in aqueous samples by fully automated on-line solid-phase exti action-gas cliromatography-mass selective detection , 7. Chromatogrl2S 67-83 (1996). [Pg.44]

Recently, multidimensional GC has been employed in enantioselective analysis by placing a chiral stationary phase such as a cyclodextrin in the second column. Typically, switching valves are used to heart-cut the appropriate portion of the separation from a non-chiral column into a chiral column. Heil et al. used a dual column system consisting of a non-chiral pre-column (30 m X 0.25 mm X 0.38 p.m, PS-268) and a chiral (30 m X 0.32 mm X 0.64 p.m, heptakis(2,3-di-(9-methyl-6-(9-tert-butyldimethylsilyl)-(3-cyclodextrin) (TBDM-CD) analytical column to separate derivatized urinary organic acids that are indicative of metabolic diseases such as short bowel syndrome, phenylketonuria, tyrosinaemia, and others. They used a FID following the pre-column and an ion trap mass-selective detector following the... [Pg.415]

It is crucial in quantitative GC to obtain a good separation of the components of interest. Although this is not critical when a mass spectrometer is used as the detector (because ions for identification can be mass selected), it is nevertheless good practice. If the GC effluent is split between the mass spectrometer and FID detector, either detector can be used for quantitation. Because the response for any individual compound will differ, it is necessary to obtain relative response factors for those compounds for which quantitation is needed. Care should be taken to prevent contamination of the sample with the reference standards. This is a major source of error in trace quantitative analysis. To prevent such contamination, a method blank should be run, following all steps in the method of preparation of a sample except the addition of the sample. To ensure that there is no contamination or carryover in the GC column or the ion source, the method blank should be run prior to each sample. [Pg.215]

More direct observations of the kinetic energy dependence of cross-sections should be possible using external ionization techniques where the reactant ion can be chosen by initial mass analysis and, in principle, its energy more readily controlled. Several studies using external ionization techniques, both with (2, 10, 45) and without (20, 21, 27, 41) preliminary mass selection of the reactant ion, have been reported. However, apparently with these techniques it is not possible to obtain well-defined primary ion beams at energies below 0.5-1 e.v. a region of critical importance both experimentally and theoretically. [Pg.157]

The SsO ion was then mass selected and neutralized by electron exchange with Xe atoms. The neutral beam was reionized by collision with O2 and the... [Pg.212]

Stan H-J. 1989. Application of capillary gas chromatography with mass selective detection to pesticide residue analysis. J Chromatogr 467 85-98. [Pg.232]

Leung AM, McDonough DM, West CD. 1998. Determination of endosulfans in soil/sediment samples from Point Mugu, Oxnard, CA, using capillary gas chromatography/mass selective detection (CC/MSD). Environmental Monitoring and Assessment 50(l) 85-94. [Pg.303]

We use laser photofragment spectroscopy to study the vibrational and electronic spectroscopy of ions. Our photofragment spectrometer is shown schematically in Eig. 2. Ions are formed by laser ablation of a metal rod, followed by ion molecule reactions, cool in a supersonic expansion and are accelerated into a dual TOE mass spectrometer. When they reach the reflectron, the mass-selected ions of interest are irradiated using one or more lasers operating in the infrared (IR), visible, or UV. Ions that absorb light can photodissociate, producing fragment ions that are mass analyzed and detected. Each of these steps will be discussed in more detail below, with particular emphasis on the ions of interest. [Pg.335]

P 24] The nitration of naphthalene was carried out with dissolved or in situ generated N2O5 gas [37]. The temperatare was set to -10 to 50 °C and residence times to 15—45 s. The reaction mixtare processed in the micro reactor was quenched with water, extracted and analyzed by HPLC or GC with mass-selective detection. [Pg.451]

Our approach is similar to that employed in research of free cluster ions in the gas phase, where various measurements are conducted on the cluster which is mass selected out of the size-distributed clusters generated by laser sputtering. Based on the chemical compositions of the isolated MFCs, we discuss the determining factors of core size in connection with the formation processes. Some core-size dependent properties of the MFCs are also presented. [Pg.374]

A survey of the literature with a key phrase tissue residue analysis yielded a distribution of separation and detection techniques as outlined in Table 2. LC with either UV or fluorescence detection was the most common separation and detection technique, representing 61% of the citations. The results are an indication of the maturity of LC as a common, well-understood technique. The second most commonly used technique cited in the literature (13%) was GC with either a mass-selective or electron capture detector. GC is also a mature technology and a good choice owing to the... [Pg.310]

Conditions apparatus, Hewlett-Packard HP5890 equipped with an HP5972 mass-selective ion detector (quadruple) column, PTE-5 (30 m x 0.25-mm i.d.) with 0.25- am film thickness column temperature, 50 °C (1 min), increased at 20 °C min to 150 °C(5 min) and then at 4 °Cmin to 280 °C (30 min) inlet and detector (GC/MS transfer line) temperature, 250 and 280 °C, respectively gas flow rate, He carrier gas ImLmin" injection method, splitless mode solvent delay, 3 min electron ionization voltage, 70eV scan rate, 1.5 scanss scanned-mass range, m/z 50-550. The retention times of benfluralin, pendimethalin and trifluralin are 15.2, 25.1 and... [Pg.393]

Chromatographic systems were finally coupled with relatively inexpensive, yet powerful, detection systems with the advent of the quadrupole mass selective detector (MSD). The operational complexity of this type of instrumentation has significantly declined over the last 15 years, thus allowing routine laboratory use. These instruments... [Pg.439]


See other pages where Mass-selection is mentioned: [Pg.310]    [Pg.872]    [Pg.1342]    [Pg.1345]    [Pg.1346]    [Pg.1349]    [Pg.1350]    [Pg.1351]    [Pg.2450]    [Pg.198]    [Pg.233]    [Pg.435]    [Pg.539]    [Pg.405]    [Pg.423]    [Pg.192]    [Pg.229]    [Pg.322]    [Pg.205]    [Pg.171]    [Pg.119]    [Pg.119]    [Pg.205]    [Pg.426]   
See also in sourсe #XX -- [ Pg.183 ]

See also in sourсe #XX -- [ Pg.113 , Pg.119 ]




SEARCH



© 2024 chempedia.info