Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Atomic absorption spectrometry examples

Figure 15-12 is a schematic illustration of a technique known as acid volatile sulfides/ simultaneously extracted metals analysis (AVS/SEM). Briefly, a strong acid is added to a sediment sample to release the sediment-associated sulfides, acid volatile sulfides, which are analyzed by a cold-acid purge-and-trap technique (e.g., Allen et ai, 1993). The assumption shown in Fig. 15-12 is that the sulfides are present in the sediments in the form of either FeS or MeS (a metal sulfide). In a parallel analysis, metals simultaneously released with the sulfides (the simultaneously extracted metals) are also quantified, for example, by graphite furnace atomic absorption spectrometry. Metals released during the acid attack are considered to be associated with the phases operationally defined as "exchangeable," "carbonate," "Fe and Mn oxides," "FeS," and "MeS."... [Pg.400]

The concentration of copper in a sample may be determined by using an iodometric titration or by atomic absorption spectrometry. In each of the following examples, calculate the cost of the assay (assume that the charge for the analyst s time is 50 per hour) ... [Pg.62]

For example, the industrial preparation of mineral acids, such as sulfuric, hydrochloric and nitric, inevitably leads to them containing small concentrations of metals as impurities. If the acid is to be used purely as an acid in a simple reaction, the presence of small amounts of metals is probably unimportant. If, however, the acid is to be used to digest a sample for the determination of trace metals by atomic absorption spectrometry, then clearly the presence of metallic impurities in the acid may have a significant effect on the results. For this latter application, high-purity acids that are essentially metal-free are required. [Pg.126]

Atomic absorption spectrometry is one of the most widely used techniques for the determination of metals at trace levels in solution. Its popularity as compared with that of flame emission is due to its relative freedom from interferences by inter-element effects and its relative insensitivity to variations in flame temperature. Only for the routine determination of alkali and alkaline earth metals, is flame photometry usually preferred. Over sixty elements can be determined in almost any matrix by atomic absorption. Examples include heavy metals in body fluids, polluted waters, foodstuffs, soft drinks and beer, the analysis of metallurgical and geochemical samples and the determination of many metals in soils, crude oils, petroleum products and plastics. Detection limits generally lie in the range 100-0.1 ppb (Table 8.4) but these can be improved by chemical pre-concentration procedures involving solvent extraction or ion exchange. [Pg.333]

The mathematical model may not closely fit the data. For example. Figure 1 shows calibration data for the determination of iron in water by atomic absorption spectrometry (AAS). At low concentrations the curve is first- order, at high concentrations it is approximately second- order. Neither model adequately fits the whole range. Figure 2 shows the effects of blindly fitting inappropriate mathematical models to such data. In this case, a manually plotted curve would be better than either a first- or second-order model. [Pg.116]

Other applications of supported liquid membranes have been related to metal speciation. For example, recently a system for chromium speciation has been developed based on the selective extraction and enrichment of anionic Cr(VI) and cationic Cr(III) species in two SLM units connected in series. Aliquat 336 and DEHPA were used respectively as carriers for the two species and graphite furnace atomic absorption spectrometry used for final metal determination. With this process, it was possible to determine chromium in its different oxidation states [103]. [Pg.582]

The measurement of very low levels of environmental pollutants is becoming increasingly important. The determination of lead, a cumulative toxin, is a good example. The current maximum allowable concentration of lead in British drinking water, before it enters the distribution network, is SO ng ml [29]. Although electrothermal atomization atomic-absorption spectrometry (AAS) can be used to measure this and lower concentrations, it is slow and requires considerable effort to ensure accurate results. Flames can provide simple and effective atom sources, but, if samples are aspirated directly, do not provide sufficient sensitivity. Thus, if a flame is to be used as the atom source, a preconcentration step is required. [Pg.151]

A convenient method is the spectrometric determination of Li in aqueous solution by atomic absorption spectrometry (AAS), using an acetylene flame—the most common technique for this analyte. The instrument has an emission lamp containing Li, and one of the spectral lines of the emission spectrum is chosen, according to the concentration of the sample, as shown in Table 2. The solution is fed by a nebuhzer into the flame and the absorption caused by the Li atoms in the sample is recorded and converted to a concentration aided by a calibration standard. Possible interference can be expected from alkali metal atoms, for example, airborne trace impurities, that ionize in the flame. These effects are canceled by adding 2000 mg of K per hter of sample matrix. The method covers a wide range of concentrations, from trace analysis at about 20 xg L to brines at about 32 g L as summarized in Table 2. Organic samples have to be mineralized and the inorganic residue dissolved in water. The AAS method for determination of Li in biomedical applications has been reviewed . [Pg.324]

Atomic absorption spectrometry (AA). This is a standard laboratory analytical tool for metals. The metal is extracted into a solution and then vaporized in a flame. A light beam with a wavelength absorbed by the metal of interest passes through the vaporized sample for example, to measure zinc, a zinc resonance lamp can be used so that the emission and absorbing wavelengths are perfectly matched. The absorption of the light by the sample is measured and Beer s law is applied to quantify the amount present. [Pg.620]

The most frequently applied analytical methods used for characterizing bulk and layered systems (wafers and layers for microelectronics see the example in the schematic on the right-hand side) are summarized in Figure 9.4. Besides mass spectrometric techniques there are a multitude of alternative powerful analytical techniques for characterizing such multi-layered systems. The analytical methods used for determining trace and ultratrace elements in, for example, high purity materials for microelectronic applications include AAS (atomic absorption spectrometry), XRF (X-ray fluorescence analysis), ICP-OES (optical emission spectroscopy with inductively coupled plasma), NAA (neutron activation analysis) and others. For the characterization of layered systems or for the determination of surface contamination, XPS (X-ray photon electron spectroscopy), SEM-EDX (secondary electron microscopy combined with energy disperse X-ray analysis) and... [Pg.259]

The most suitable techniques for the rapid, accurate determination of the elemental content of foods are based on analytical atomic spectrometry, for example, atomic absorption spectrometry (AAS), atomic emission spectrometry (AES), and mass spectrometry, the most popular modes of which are Game (F), electrothermal atomization (ET), and hydride generation (HG) AAS, inductively coupled plasma (ICP), microwave-induced plasma (MIP), direct current plasma (DCP) AES, and ICP-MS. Challenges in the determination of elements in food include a wide range of concentrations, ranging from ng/g to percent levels, in an almost endless combination of analytes with matrix speci be matrices. [Pg.20]

An example of a calibration curve for Cd with a Zeeman electrothermal atomization atomic absorption spectrometry (ET-AAS) is presented in Figure 6.1. A simple linear regression model is fitted through the data points. The response of the ET-AAS is placed on the ordinate and the concentration of the injected standard solutions on the abscissa. The concentration of the unknown samples can be calculated back as X = (Yt — a)/b. [Pg.137]

In some situations, an apparent decrease in the detection limit can occur when the analytical procedure includes a preliminary preconcentration (e.g., by extraction or evaporation of a liquid sample). For example, if direct determination by atomic absorption spectrometry allows detection of 0.1 ng/mL metal in solution, then an increase in concentration after separation/preconcentration in the ratio 1 20 lowers the detection limit for the whole procedure to 0.005 ng/mL. Both values are useful and have real meaning when they are correctly described. [Pg.14]

Human activities often mobilize and redistribute natural compounds in the environment to an extent that they can cause adverse effects. Much attention has been paid to the determination of trace of pollutant elements on account of their significant effect on the environment. The potential of USAL has been put into use in environmental element analysis. Thus, the US leaching of cadmium from coals and pyrolysed oil shale prior to ETAAS [56] resulted in a twofold increase in precision, better detection limits and decreased background absorbance in relation to total digestion. Cadmium has also been successfully leached with US assistance from ash samples with subsequent flow-injection coid-vapour atomic absorption spectrometry [57]. Additional examples include the leaching of germanium from soiis with an uitrasonic probe in 10 min [58] or that of lead from coal in 60 s [59]. [Pg.125]

Figure 1 represents four examples of the evaluation of measurement uncertainty for potassium, calcium, magnesium and glucose using flame photometry, atomic absorption spectrometry and molecular spectrometry (Mg determination with Titan Yellow and glucose determination with glucose oxidase). For the sake of simplicity in Fig. 1, the component of uncertain-... [Pg.33]

Atomic absorption spectrometry with flame (AA-F) or electrothermal atomization furnace (AA-ETA), inductively coupled plasma-emission spectroscopy (ICP-ES), inductively coupled plasma-mass spectrometry (ICP-MS), and high-performance liquid chromatography-mass spectrometry (LC-MS) are state-of-the-art analytical techniques used to measure metals in biological fluids. They are specific and sensitive and provide the cfinical laboratory with the capability to measure a broad array of metals at clinically significant concentrations. For example, ICP-MS is used to measure several metals simultaneously. Photometric assays are also available but require large volumes of sample and have limited analytical performance. Spot tests are also... [Pg.1373]


See other pages where Atomic absorption spectrometry examples is mentioned: [Pg.61]    [Pg.76]    [Pg.218]    [Pg.62]    [Pg.117]    [Pg.294]    [Pg.524]    [Pg.101]    [Pg.140]    [Pg.182]    [Pg.299]    [Pg.295]    [Pg.524]    [Pg.68]    [Pg.157]    [Pg.88]    [Pg.191]    [Pg.15]    [Pg.122]    [Pg.361]    [Pg.411]    [Pg.600]    [Pg.646]    [Pg.218]    [Pg.293]    [Pg.14]    [Pg.81]    [Pg.807]    [Pg.807]    [Pg.92]    [Pg.196]    [Pg.846]   


SEARCH



Absorption spectrometry

Atomic absorption spectrometry

Atomic absorption spectrometry atomizers

Flame atomic absorption spectrometry examples

© 2024 chempedia.info