Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Anionic polymerization diene monomers

With the purpose of increasing the range of available block copolymers, comonomers other than methacrylates and acrylates can also be involved in sequential polymerization, provided that they are susceptible to anionic polymerization. Dienes, styrene derivatives, vinylpyridines , oxiranes and cyclosiloxanes are examples of such comonomers. The order of the sequential addition is, however, of critical importance for the synthesis to be successful. Indeed, the pX a of the conjugated acid of the living chain-end of the first block must be at least equal to or even larger than that of the second monomer. Translated to a nucleophilicity scale, this pK effect results in the following order of reactivity dienes styrenes > vinylpyridines > methacrylates and acrylates > oxiranes > siloxanes. [Pg.864]

The use of alkaU metals for anionic polymerization of diene monomers is primarily of historical interest. A patent disclosure issued in 1911 (16) detailed the use of metallic sodium to polymerize isoprene and other dienes. Independentiy and simultaneously, the use of sodium metal to polymerize butadiene, isoprene, and 2,3-dimethyl-l,3-butadiene was described (17). Interest in alkaU metal-initiated polymerization of 1,3-dienes culminated in the discovery (18) at Firestone Tire and Rubber Co. that polymerization of neat isoprene with lithium dispersion produced high i7j -l,4-polyisoprene, similar in stmcture and properties to Hevea natural mbber (see ELASTOLffiRS,SYNTHETic-POLYisoPRENE Rubber, natural). [Pg.236]

The mechanism of the anionic polymerization of styrenes and 1,3-dienes initiated by alkaU metals has been described in detail (3,20) as shown in equations 3—5 where Mt represents an alkaU metal and M is a monomer molecule. Initiation is a heterogeneous process occurring on the metal surface. The... [Pg.236]

Anionic polymerization of vinyl monomers can be effected with a variety of organometaUic compounds alkyllithium compounds are the most useful class (1,33—35). A variety of simple alkyllithium compounds are available commercially. Most simple alkyllithium compounds are soluble in hydrocarbon solvents such as hexane and cyclohexane and they can be prepared by reaction of the corresponding alkyl chlorides with lithium metal. Methyllithium [917-54-4] and phenyllithium [591-51-5] are available in diethyl ether and cyclohexane—ether solutions, respectively, because they are not soluble in hydrocarbon solvents vinyllithium [917-57-7] and allyllithium [3052-45-7] are also insoluble in hydrocarbon solutions and can only be prepared in ether solutions (38,39). Hydrocarbon-soluble alkyllithium initiators are used directiy to initiate polymerization of styrene and diene monomers quantitatively one unique aspect of hthium-based initiators in hydrocarbon solution is that elastomeric polydienes with high 1,4-microstmcture are obtained (1,24,33—37). Certain alkyllithium compounds can be purified by recrystallization (ethyllithium), sublimation (ethyllithium, /-butyUithium [594-19-4] isopropyllithium [2417-93-8] or distillation (j -butyUithium) (40,41). Unfortunately, / -butyUithium is noncrystaUine and too high boiling to be purified by distiUation (38). Since methyllithium and phenyllithium are crystalline soUds which are insoluble in hydrocarbon solution, they can be precipitated into these solutions and then redissolved in appropriate polar solvents (42,43). OrganometaUic compounds of other alkaU metals are insoluble in hydrocarbon solution and possess negligible vapor pressures as expected for salt-like compounds. [Pg.238]

Aromatic radical anions, such as lithium naphthalene or sodium naphthalene, are efficient difunctional initiators (eqs. 6,7) (3,20,64). However, the necessity of using polar solvents for their formation and use limits their utility for diene polymerization, since the unique abiUty of lithium to provide high 1,4-polydiene microstmcture is lost in polar media (1,33,34,57,63,64). Consequentiy, a significant research challenge has been to discover a hydrocarbon-soluble dilithium initiator which would initiate the polymerization of styrene and diene monomers to form monomodal a, CO-dianionic polymers at rates which are faster or comparable to the rates of polymerization, ie, to form narrow molecular weight distribution polymers (61,65,66). [Pg.239]

Co-polymerizations and homo-polymerizations of monomers such as dienes or 4-methylene dioxolan, in which two or more types of ion may propagate simultaneously, are further examples of enieidic polymerizations. These dienes, of course, also provide examples of eniedic radical and anionic polymerizations. Indeed the idea of dieidic polymerization has been suggested by several authors in relation to anionic polymerizations it arose from the aggregation in solution of the lithium alkyls [135], and similar phenomena. [Pg.151]

The alkyllithium-initiated, anionic polymerization of vinyl and diene monomers can often be performed without the incursion of spontaneous termination or chain transfer reactions (1). The non-terminating nature of these reactions has provided methods for the synthesis of polymers with predictable molecular weights and narrow molecular weight distributions (2). In addition, these polymerizations generate polymer chains with stable, carbanionic chain ends which, in principle, can be converted into a diverse array of functional end groups using the rich and varied chemistry of organolithium compounds (3). [Pg.139]

Alkyl derivatives of the alkaline-earth metals have also been used to initiate anionic polymerization. Organomagnesium compounds are considerably less active than organolithiums, as a result of the much less polarized metal-carbon bond. They can only initiate polymerization of monomers more reactive than styrene and 1,3-dienes, such as 2- and 4-vinylpyridines, and acrylic and methacrylic esters. Organostrontium and organobarium compounds, possessing more polar metal-carbon bonds, are able to polymerize styrene and 1,3-dienes as well as the more reactive monomers. [Pg.413]

A second route is termed sequential anionic polymerization. More recently, also controlled radical techniques can be applied successfully for the sequential preparation of block copolymers but still with a less narrow molar mass distribution of the segments and the final product. In both cases, one starts with the polymerization of monomer A. After it is finished, monomer B is added and after this monomer is polymerized completely again monomer A is fed into the reaction mixture. This procedure is applied for the production of styrene/buta-diene/styrene and styrene/isoprene/styrene triblock copolymers on industrial scale. It can also be used for the preparation of multiblock copolymers. [Pg.251]

Monomers devoid of polar groups generally undergo anionic polymerization in a predictable manner. With polar monomers sometimes side reactions occur during the process transfer reactions in the case of acrylonitrile, or propylene oxide, and even more so with alkylacrylates deactivations (or "killing") reactions in the case of halogen substituted styrene or dienes. [Pg.60]

Ionic polymerizations are remarkable in the variety of polymer steric structures that are produced by variation of the solvent or the counter ion. The long lived nature of the active chain ends in the anionic polymerization of diene and styrene type monomers lends itself to studies of their structure and properties which might have relevance to the structure of the polymer produced when these chain ends add further monomer. One of the tools that, may be used in the characterization of these ion pairs is the NMR spectrometer. However, it should always be appreciated that, the conditions in the NMR tube are frequently far removed from those in the actual polymerization. Furthermore NMR observes the equilibrium form on a long time scale, and this is not necessarily that form present at the moment of polymerization. [Pg.177]

Anionic polymerizations initiated with alkyllithium compounds enable us to prepare homopolymers as well as copolymers from diene and vinylaromatic monomers. These polymerization systems are unique in that they have precise control over such polymer properties as composition, microstructure, molecular weight, molecular weight distribution, choice of functional end groups and even copolymer monomer sequence distribution. Attempts have been made in this paper to survey these salient features with respect to their chemistry and commercial applications. [Pg.405]

Anionic polymerization of conjugated dienes and olefins retains its lithium on the chain ends as being active moities and capable of propagating additional monomer. This distinguishing feature has an advantage over other methods of polymerization such as radical, cationic and Ziegler polymerization. Many attempts have been made to prepare block copolymers by the above methods, but they were not successful in preparing the clear characterized block copolymer produced by anionic technique. [Pg.419]

Diphenylmethylcarbanions. The carbanions based on diphenyknethane (pKa = 32) (6) are useful initiators for vinyl and heterocyclic monomers, especially alkyl methacrylates at low temperatures (94,95). Addition of lithium chloride or lithium /W -butoxide has been shown to narrow the molecular weight distribution and improve the stability of active centers for anionic polymerization of both alkyl methacrylates and tert-huXyi acrylate (96,97). Surprisingly, these more stable carbanions can also efficiendy initiate the polymerization of styrene and diene monomers (98). [Pg.240]

Defined in this way, anionic polymerizations can only be expected when the cation is derived from one of the most electropositive metals, the cation is strongly solvated, and the polymer anion is highly stabilized by resonance. These conditions are frequently met with sodium (206—208) or potassium (209, 210) catalysts in basic solvents with polar monomers or dienes. [Pg.545]

Catalysts of the Ziegler-Natta type are applied widely to the anionic polymerization of olefins and dienes. Polar monomers deactivate the system and cannot be copolymerized with olefins. J. L. Jezl and coworkers discovered that the living chains from an anionic polymerization can be converted to free radicals by the reaction with organic peroxides and thus permit the formation of block copolymers with polar vinyl monomers. In this novel technique of combined anionic-free radical polymerization, they are able to produce block copolymers of most olefins, such as alkylene, propylene, styrene, or butadiene with polar vinyl monomers, such as acrylonitrile or vinyl pyridine. [Pg.10]

In anionic polymerization of vinyl monomers (nondiene), low temperatures and polar solvents favor the preparation of syndiotactic polymers.21 Nonpolar solvents tend to favor isotactic polymerization. In the case of diene monomers such as butadiene and isoprene, the use of lithium based initiators in nonpolar... [Pg.633]

The most important representatives of anionic polymerization centres are formed from vinyl and diene monomers. The trivial schematic representation of a carbanion... [Pg.184]

The first living systems based on anionic polymerization of nonpolar monomers, such as styrene and dienes in some hydrocarbon solvents, showed nearly perfect livingness producing very high molecular weight... [Pg.266]

Additions occur more easily if a carbanion with resonance or inductive stabilization is formed in the addition. Thus, fulvenes are very reactive, vinylsilanes and highly fluorinated alkenes somewhat less so. Styrene, 1,3-dienes, and enynes are more reactive than isolated alkenes, and Grignard reagents may be used to initiate anionic polymerization of styrenes, dienes, and acryhc monomers. Strained alkenes such as norbomenes and cyclopropenes are also more reactive. Examples of additions facilitated by resonance or substitution are shown in Scheme 8. [Pg.312]

The highest volume commercial block copolymers are the styrene-butadiene (S-B) block copolymers. S-B block copolymers are manufactured using anionic polymerization with sequential addition of monomer (SAM) techniques. Attempts to make S-B polymers using NMRP via SAM have been limited because NMRP does not generally work well for diene monomers. Therefore, Priddy et al. [Pg.152]

The kinetics and mechanistic details of the lithium alkyl-initiated anionic polymerization of styrene and diene monomers in hydrocarbon solvents have been the subject of numerous investigations [15]. Some of the first investigations revealed that the propagation reaction was first order in monomer, as might be expected, but followed a fractional order in the lithium alkyl [16]. Most investigators have observed a 0.5 order for the polymerization of styrene. Values have been quoted for the polymerization of butadiene and isoprene ranging from about 0.17 to 0.5, with 0.25 being the most commonly quoted value for both monomers. There is some evidence that the order in lithium for diene polymerization... [Pg.467]

The character of the counterion and the solvent both affect the microstruclure of polymers made anionically from dienes. In general, the proportion of 1,4 chains is highest for Li and decreases with decreasing clecironegativity and increasing size of the alkali metals in the order Li > Na > K > Rb > Cs. A very high (>90%) 1,4 content is achieved only with lithium alkyl or lithium metal initiation in hydrocarbon solvents. The properties of polymers of conjugated diolefins tend to be like those of thermoplastics if the monomer enchainment is 1,2 or 3,4 [reactions (4-3) and (4-4)]. Elastomeric behavior is realized from 1,4 polymerization and particularly if the polymer structure is cis about ihe residual double bond. [Pg.317]


See other pages where Anionic polymerization diene monomers is mentioned: [Pg.238]    [Pg.129]    [Pg.87]    [Pg.11]    [Pg.18]    [Pg.22]    [Pg.20]    [Pg.48]    [Pg.403]    [Pg.119]    [Pg.71]    [Pg.534]    [Pg.238]    [Pg.238]    [Pg.240]    [Pg.24]    [Pg.10]    [Pg.245]    [Pg.117]    [Pg.220]    [Pg.470]    [Pg.471]    [Pg.473]   


SEARCH



Anionic 1,3-diene monomers

Anionic polymerization dienes

Diene monomer polymerization

Diene monomers

Diene polymerization

Diene, anionic polymerization

Dienes anionic

Dienes, polymerization

Monomers, polymerization

© 2024 chempedia.info