Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

From Vinyls

Treatment of TaCl2Cp 2 with (CH2=CH)MgBr afforded TaH(=C=CH2)Cp=i=2 directly in 75% yield, presumably by an a-H shift from an intermediate Ta (CH=CH2)2Cp 2 the vinyl Ta(CH=CH2)(CO)Cp 2 was formed by a formal reversal of this shift on treatment with CO. UV irradiation of this vinyl reformed the vinylidene [253]. [Pg.15]


Vinylidene chloride and vinyl chloride lead to the copolymer known as Saran. Other commercial copolymers are produced from vinyl chloride and acrylonitrile (Dynel), and from maleic anhydride and styrene. [Pg.1016]

The reaction of alkenyl mercurials with alkenes forms 7r-allylpalladium intermediates by the rearrangement of Pd via the elimination of H—Pd—Cl and its reverse readdition. Further transformations such as trapping with nucleophiles or elimination form conjugated dienes[379]. The 7r-allylpalladium intermediate 418 formed from 3-butenoic acid reacts intramolecularly with carboxylic acid to yield the 7-vinyl-7-laCtone 4I9[380], The /i,7-titisaturated amide 421 is obtained by the reaction of 4-vinyl-2-azetidinone (420) with an organomercur-ial. Similarly homoallylic alcohols are obtained from vinylic oxetanes[381]. [Pg.81]

Poly(vinyl alcohol) is a useful water soluble polymer It cannot be prepared directly from vinyl alcohol because of the rapidity with which vinyl alcohol (H2C=CHOH) isomenzes to acetaldehyde Vinyl acetate however does not rearrange and can be polymerized to poly(vinyl acetate) How could you make use of this fact to prepare poly(vinyl alcohol)" ... [Pg.883]

PVB resins from [VINYL POLYTffiRS - VINYL ACETAL POLYTffiRS] (Vol 24)... [Pg.145]

Highly unstable vinyl cations, generated in situ from vinyl triflates have also been arylated (the triflate group is replaced by the aromatics) to give vinyl aromatics under Friedel-Crafts conditions (28). [Pg.553]

Acetylene and hydrogen chloride historically were used to make chloroprene [126-99-8]. The olefin reaction is used to make ethyl chloride from ethylene and to make 1,1-dichloroethane from vinyl chloride. 1,1-Dichloroethane is an intermediate to produce 1,1,1-trichloroethane by thermal (26) or photochemical chlorination (27) routes. [Pg.444]

Polymer Applications. The reaction of sahcylaldehyde with poly(vinyl alcohol) to form an acetal has been used to provide dye receptor sites on poly(vinyl alcohol) fibers (89) and to improve the light stabihty of blend fibers from vinyl chloride resin and poly(vinyl alcohol) (90) (see Fibers, POLY(VINYL alcohol)). ... [Pg.508]

Vinyllithium [917-57-7] can be formed direcdy from vinyl chloride by means of a lithium [7439-93-2] dispersion containing 2 wt % sodium [7440-23-5] at 0—10°C. This compound is a reactive intermediate for the formation of vinyl alcohols from aldehydes, vinyl ketones from organic acids, vinyl sulfides from disulfides, and monosubstituted alkenes from organic halides. It can also be converted to vinylcopper [37616-22-1] or divinylcopper lithium [22903-99-7], which can then be used to introduce a vinyl group stereoselectively into a variety of a, P-unsaturated systems (26), or simply add a vinyl group to other a, P-unsaturated compounds to give y, 5-unsaturated compounds. Vinyllithium reagents can also be converted to secondary alcohols with trialkylb o r ane s. [Pg.414]

By-Product Disposal. By-product disposal from vinyl chloride manufacturing plants is compHcated by the need to process a variety of gaseous, organic Hquid, aqueous, and soHd streams, while ensuring that no chlorinated organic compounds are inadvertendy released. Each class of by-product streams poses its own treatment and disposal challenges. [Pg.419]

Process water streams from vinyl chloride manufacture are typically steam-stripped to remove volatile organics, neutralized, and then treated in an activated sludge system to remove any nonvolatile organics. If fluidized-bed oxychlorination is used, the process wastewater may also contain suspended catalyst fines and dissolved metals. The former can easily be removed by sedimentation, and the latter by precipitation. Depending on the specific catalyst formulation and outfall limitations, tertiary treatment may be needed to reduce dissolved metals to acceptable levels. [Pg.419]

Vinyl chloride has gained worldwide importance because of its industrial use as the precursor to PVC. It is also used in a wide variety of copolymers. The inherent flame-retardant properties, wide range of plastici2ed compounds, and low cost of polymers from vinyl chloride have made it a major industrial chemical. About 95% of current vinyl chloride production worldwide ends up in polymer or copolymer appHcations (83). Vinyl chloride also serves as a starting material for the synthesis of a variety of industrial compounds, as suggested by the number of reactions in which it can participate, although none of these appHcations will likely ever come anywhere near PVC in terms of volume. The primary nonpolymeric uses of vinyl chloride are in the manufacture of vinyHdene chloride and tri- and tetrachloroethylene [127-18-4] (83). [Pg.423]

Although they lack commercial importance, many other poly(vinyl acetal)s have been synthesized. These include acetals made from vinyl acetate copolymerized with ethylene (43—46), propjiene (47), isobutjiene (47), acrylonitrile (48), acrolein (49), acrylates (50,47), aHyl ether (51), divinyl ether (52), maleates (53,54), vinyl chloride (55), diaHyl phthalate (56), and starch (graft copolymer) (47). [Pg.450]

Vinyls. Vinyl resins are thermoplastic polymers made principally from vinyl chloride other monomers such as vinyl acetate or maleic anhydride are copolymerized to add solubUity, adhesion, or other desirable properties (see Maleic anhydride, maleic acid, and fumaric acid). Because of the high, from 4,000 to 35,000, molecular weights large proportions of strong solvents are needed to achieve appHcation viscosities. Whereas vinyls are one of the finest high performance systems for steel, many vinyl coatings do not conform to VOC requirements (see Vinyl polymers). [Pg.365]

These processes have supplanted the condensation reaction of ethanol, carbon monoxide, and acetylene as the principal method of generating ethyl acrylate [140-88-5] (333). Acidic catalysts, particularly sulfuric acid (334—338), are generally effective in increasing the rates of the esterification reactions. Care is taken to avoid excessive polymerisation losses of both acryflc acid and the esters, which are accentuated by the presence of strong acid catalysts. A synthesis for acryflc esters from vinyl chloride (339) has also been examined. [Pg.415]

When many moleeules eombine the maeromoleeule is termed a polymer. Polymerization ean be initiated by ionie or free-radieal meehanisms to produee moleeules of very high moleeular weight. Examples are the formation of PVC (polyvinyl ehloride) from vinyl ehloride (the monomer), polyethylene from ethylene, or SBR synthetie rubber from styrene and butadiene. [Pg.25]

Group of plastics composed of resins derived from vinyl monomers, excluding those that are covered by other classifications (i.e., acrylics and styrene plastics). Examples include PVC, polyvinyl acetate, polyvinyl butyral, and various... [Pg.141]

Dehydrochlorination of bis(tnfluoromethylthio)acetyl chloride with calcium oxide gives bis(trifluoromethylthio)ketene [5] (equation 6) Elimination of hydrogen chloride or hydrogen bromide by means of tetrabutylammonium or potassium fluoride from vinylic chlorides or bromides leads to acetylenes or allenes [6 (equation 7) Addition of dicyclohexyl-18-crown-6 ether raises the yields of potassium fluoride-promoted elimination of hydrogen bromide from (Z)-P-bromo-p-ni-trostyrene in acetonitrile from 0 to 53-71 % In dimethyl formamide, yields increase from 28-35% to 58-68%... [Pg.889]

Elimination of hydrogen fluoride from vinylic fluorides yields allenes [2J] or acetylenes [24] (equations 21 and 22)... [Pg.893]

Scheme 9.32 Synthesis of (S)-ibuprofen (69) from vinyl-epoxide 70 Ar = 4- BuC6H4. Scheme 9.32 Synthesis of (S)-ibuprofen (69) from vinyl-epoxide 70 Ar = 4- BuC6H4.
Vinyloxirancs and vinyl acetals constitute a special subset of allylic electrophiles. The product of Sn2 displacement of vinyloxiranes is an allylic alcohol, while the SN2 product from vinyl acetals is a vinyl ether. [Pg.879]

Several radical copolymerizations of vinyl 2-furoate with well-known monomers (50 50) were also studied. Complete inhibition was obtained with vinyl acetate, very strong retardation with styrene, vinyl chloride and acrylonitrile methyl methacrylate homopolymerized without appreciable decrease in rate. It is evident that the degree of retardation that vinyl 2-furoate imposes upon the other monomer depends on the stability of the latter s free radical. With styrene and vinyl chloride the small amounts of fairly low molecular-weight products contained units from vinyl 2-furoate which had entered the chain both through the vinyl bond and through the ring (infrared band at 1640 cm-1). [Pg.77]


See other pages where From Vinyls is mentioned: [Pg.111]    [Pg.238]    [Pg.11]    [Pg.446]    [Pg.374]    [Pg.153]    [Pg.49]    [Pg.413]    [Pg.414]    [Pg.415]    [Pg.419]    [Pg.421]    [Pg.423]    [Pg.252]    [Pg.237]    [Pg.322]    [Pg.178]    [Pg.415]    [Pg.712]    [Pg.613]    [Pg.89]    [Pg.101]    [Pg.121]    [Pg.452]    [Pg.630]   


SEARCH



© 2024 chempedia.info