Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Diene polymerization, anionic

This chapter describes the general aspects of anionic polymerization of nonpolar vinyl monomers such as styrenes and 1,3-dienes. Anionic polymerization is defined as a chain polymerization in which the active centers are anions, in the form of... [Pg.559]

The use of alkaU metals for anionic polymerization of diene monomers is primarily of historical interest. A patent disclosure issued in 1911 (16) detailed the use of metallic sodium to polymerize isoprene and other dienes. Independentiy and simultaneously, the use of sodium metal to polymerize butadiene, isoprene, and 2,3-dimethyl-l,3-butadiene was described (17). Interest in alkaU metal-initiated polymerization of 1,3-dienes culminated in the discovery (18) at Firestone Tire and Rubber Co. that polymerization of neat isoprene with lithium dispersion produced high i7j -l,4-polyisoprene, similar in stmcture and properties to Hevea natural mbber (see ELASTOLffiRS,SYNTHETic-POLYisoPRENE Rubber, natural). [Pg.236]

The mechanism of the anionic polymerization of styrenes and 1,3-dienes initiated by alkaU metals has been described in detail (3,20) as shown in equations 3—5 where Mt represents an alkaU metal and M is a monomer molecule. Initiation is a heterogeneous process occurring on the metal surface. The... [Pg.236]

Anionic polymerization of vinyl monomers can be effected with a variety of organometaUic compounds alkyllithium compounds are the most useful class (1,33—35). A variety of simple alkyllithium compounds are available commercially. Most simple alkyllithium compounds are soluble in hydrocarbon solvents such as hexane and cyclohexane and they can be prepared by reaction of the corresponding alkyl chlorides with lithium metal. Methyllithium [917-54-4] and phenyllithium [591-51-5] are available in diethyl ether and cyclohexane—ether solutions, respectively, because they are not soluble in hydrocarbon solvents vinyllithium [917-57-7] and allyllithium [3052-45-7] are also insoluble in hydrocarbon solutions and can only be prepared in ether solutions (38,39). Hydrocarbon-soluble alkyllithium initiators are used directiy to initiate polymerization of styrene and diene monomers quantitatively one unique aspect of hthium-based initiators in hydrocarbon solution is that elastomeric polydienes with high 1,4-microstmcture are obtained (1,24,33—37). Certain alkyllithium compounds can be purified by recrystallization (ethyllithium), sublimation (ethyllithium, /-butyUithium [594-19-4] isopropyllithium [2417-93-8] or distillation (j -butyUithium) (40,41). Unfortunately, / -butyUithium is noncrystaUine and too high boiling to be purified by distiUation (38). Since methyllithium and phenyllithium are crystalline soUds which are insoluble in hydrocarbon solution, they can be precipitated into these solutions and then redissolved in appropriate polar solvents (42,43). OrganometaUic compounds of other alkaU metals are insoluble in hydrocarbon solution and possess negligible vapor pressures as expected for salt-like compounds. [Pg.238]

Two-shot techniques for acyclic diene metathesis, 435-445 for polyamides, 149-164 for polyimides, 287-300 for polyurethanes, 241-246 for transition metal coupling, 483-490 Anionic deactivation, 360 Anionic polymerization, 149, 174 of lactam, 177-178 Apolar solvents, 90 Aprotic polar solvents, 185, 338 Aprotic solvents, low-temperature condensation in, 302 Aqueous coating formulations, 235 Aqueous polyoxymethylene glycol, depolymerization of, 377 Aqueous systems, 206 Ardel, 20, 22... [Pg.577]

Surprisingly, after this very first example, there was a 20 year delay in the literature in the appearance of the second report on siloxane macromonomers. However, during this period there have been numerous studies and developments in the vinyl and diene based macromonomers91 -94). The recent approach to the synthesis of siloxane macromonomers involves the lithiumtrimethylsilanolate initiated anionic polymerization of hexamethyltrisiloxane in THF 95,123). The living chain ends were then terminated by using styrene or methacrylate functional chlorosilanes as shown in Reaction Scheme X. [Pg.23]

The first unequivocal proof of feasibility of homogeneous polymerization free of termination and chain-transfer was reported in 1956, and the concept of living polymers and its ramifications were fully developed in those publications 2). Although the initial work dealt with anionic polymerization of styrene and the dienes, the underlying ideas were soon applied by other workers to a great variety of polymeric systems, as shown by the brief review of some of those developed recently. [Pg.89]

Three kinds of polymer segments are formed in the polymerization of dienes 1-4 cis-, 1-4 trans-, and 1-2 segments (or 3-4 in polymerization of isoprene or other monosubstituted dienes). The latter may form isotactic or syndiotactic diads when the proportion of the 1-2 form is sufficiently high, e.g. a syndiotactic, highly 1-2 polybutadiene was described recently by Ashitaka et al. 123), although the so far examined 1-2 polybutadienes produced by homogeneous anionic polymerization were found to be atactic (unpubl. results of Bywater, Worsfold). [Pg.125]

Some new initiators soluble in hydrocarbons were described during the last few years. Organo-lithium compounds form 1 1 complexes with alkyls of Mg 134,135), Zn 136) or Cd l36), and their usefulness as initiators of anionic polymerization of styrene and the dienes was established 137). [Pg.131]

Analogous principles should apply to ionically propagated polymerizations. The terminus of the growing chain, whether cation or anion, can be expected to exhibit preferential addition to one or the other carbon of the vinyl group. Poly isobutylene, normally prepared by cationic polymerization, possesses the head-to-tail structure, as already mentioned. Polystyrenes prepared by cationic or anionic polymerization are not noticeably different from free-radical-poly-merized products of the same molecular weights, which fact indicates a similar chain structure irrespective of the method of synthesis. In the polymerization of 1,3-dienes, however, the structure and arrangement of the units depends markedly on the chain-propagating mechanism (see Sec. 2b). [Pg.237]

The 1,4 units constitute somewhat less than half of the total in polymerized dienes prepared by anionic polymerization at moderate temperature. Their proportion increases with the polymerization temperature. [Pg.262]

Table 1. Preparation and Anionic Polymerization of Masked Disilene, 1-Phenyl-7,8-disila-bicyclo[2.2.2]octa-2,5-diene... Table 1. Preparation and Anionic Polymerization of Masked Disilene, 1-Phenyl-7,8-disila-bicyclo[2.2.2]octa-2,5-diene...
Co-polymerizations and homo-polymerizations of monomers such as dienes or 4-methylene dioxolan, in which two or more types of ion may propagate simultaneously, are further examples of enieidic polymerizations. These dienes, of course, also provide examples of eniedic radical and anionic polymerizations. Indeed the idea of dieidic polymerization has been suggested by several authors in relation to anionic polymerizations it arose from the aggregation in solution of the lithium alkyls [135], and similar phenomena. [Pg.151]

The alkyllithium-initiated, anionic polymerization of vinyl and diene monomers can often be performed without the incursion of spontaneous termination or chain transfer reactions (1). The non-terminating nature of these reactions has provided methods for the synthesis of polymers with predictable molecular weights and narrow molecular weight distributions (2). In addition, these polymerizations generate polymer chains with stable, carbanionic chain ends which, in principle, can be converted into a diverse array of functional end groups using the rich and varied chemistry of organolithium compounds (3). [Pg.139]

Alkyl derivatives of the alkaline-earth metals have also been used to initiate anionic polymerization. Organomagnesium compounds are considerably less active than organolithiums, as a result of the much less polarized metal-carbon bond. They can only initiate polymerization of monomers more reactive than styrene and 1,3-dienes, such as 2- and 4-vinylpyridines, and acrylic and methacrylic esters. Organostrontium and organobarium compounds, possessing more polar metal-carbon bonds, are able to polymerize styrene and 1,3-dienes as well as the more reactive monomers. [Pg.413]

In addition to the triblock thermoplastic elastomers, other useful copolymers of styrene with a diene are produced commerically by living anionic polymerization. These include di-and multiblock copolymers, random copolymers, and tapered block copolymers. A tapered (gradient) copolymer has a variation in composition along the polymer chain. For example, S-S/D-D is a tapered block polymer that tapers from a polystyrene block to a styrene-diene random copolymer to polydiene block. (Tapered polymers need not have pure blocks at their ends. One can have a continuously tapered composition from styrene to diene by... [Pg.437]

The annual worlwide production of triblock thermoplastic elastomers, clear impact-resistant polystyrene, and other styrene-diene products produced by anionic polymerization exceeds a couple of billion pounds. (Commercial utilization of anionic polymerization also includes the polymerization of 1,3-butadiene alone.)... [Pg.438]

The anionic polymerization of 1,3-dienes yields different polymer structures depending on whether the propagating center is free or coordinated to a counterion [Morton, 1983 Quirk, 2002 Senyek, 1987 Tate and Bethea, 1985 Van Beylen et al., 1988 Young et al., 1984] Table 8-9 shows typical data for 1,3-butadiene and isoprene polymerizations. Polymerization of 1,3-butadiene in polar solvents, proceeding via the free anion and/or solvent-separated ion pair, favors 1,2-polymerization over 1,4-polymerization. The anionic center at carbon 2 is not extensively delocalized onto carbon 4 since the double bond is not a strong electron acceptor. The same trend is seen for isoprene, except that 3,4-polymerization occurs instead of 1,2-polymerization. The 3,4-double bond is sterically more accessible and has a lower electron density relative to the 1,2-double bond. Polymerization in nonpolar solvents takes place with an increased tendency toward 1,4-polymerization. The effect is most pronounced with... [Pg.691]

TABLE 8-9 Effect of Solvent and Counterion on Stereochemistry in Anionic Polymerization of 1,3-Dienes"... [Pg.691]

There is no mechanism that adequately explains all features of the anionic polymerization of 1,3-dienes. NMR data indicate the presence of it- and cr-bonded propagating chains (L and LI) When reaction occurs in polar solvents, the carbanion center is delocalized as both... [Pg.692]

A second route is termed sequential anionic polymerization. More recently, also controlled radical techniques can be applied successfully for the sequential preparation of block copolymers but still with a less narrow molar mass distribution of the segments and the final product. In both cases, one starts with the polymerization of monomer A. After it is finished, monomer B is added and after this monomer is polymerized completely again monomer A is fed into the reaction mixture. This procedure is applied for the production of styrene/buta-diene/styrene and styrene/isoprene/styrene triblock copolymers on industrial scale. It can also be used for the preparation of multiblock copolymers. [Pg.251]

Monomers devoid of polar groups generally undergo anionic polymerization in a predictable manner. With polar monomers sometimes side reactions occur during the process transfer reactions in the case of acrylonitrile, or propylene oxide, and even more so with alkylacrylates deactivations (or "killing") reactions in the case of halogen substituted styrene or dienes. [Pg.60]


See other pages where Diene polymerization, anionic is mentioned: [Pg.160]    [Pg.160]    [Pg.265]    [Pg.238]    [Pg.87]    [Pg.87]    [Pg.119]    [Pg.129]    [Pg.132]    [Pg.107]    [Pg.245]    [Pg.87]    [Pg.285]    [Pg.11]    [Pg.22]    [Pg.487]    [Pg.20]    [Pg.561]    [Pg.48]    [Pg.187]    [Pg.403]    [Pg.119]    [Pg.17]    [Pg.27]    [Pg.71]    [Pg.72]    [Pg.177]   
See also in sourсe #XX -- [ Pg.71 , Pg.72 , Pg.73 , Pg.74 , Pg.75 , Pg.76 , Pg.77 , Pg.78 , Pg.79 , Pg.80 , Pg.81 ]




SEARCH



Anionic chain polymerization 1,3-dienes

Anionic polymerization diene monomers

Anionic polymerization dienes

Anionic polymerization dienes

Diene polymerization

Dienes anionic

Dienes, polymerization

© 2024 chempedia.info