Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Properties polymer

Most properties of linear polymers are controlled by two different factors. The chemical constitution of tire monomers detennines tire interaction strengtli between tire chains, tire interactions of tire polymer witli host molecules or witli interfaces. The monomer stmcture also detennines tire possible local confonnations of tire polymer chain. This relationship between the molecular stmcture and any interaction witli surrounding molecules is similar to tliat found for low-molecular-weight compounds. The second important parameter tliat controls polymer properties is tire molecular weight. Contrary to tire situation for low-molecular-weight compounds, it plays a fimdamental role in polymer behaviour. It detennines tire slow-mode dynamics and tire viscosity of polymers in solutions and in tire melt. These properties are of utmost importance in polymer rheology and condition tlieir processability. The mechanical properties, solubility and miscibility of different polymers also depend on tlieir molecular weights. [Pg.2514]

The rotational isomeric state (RIS) model assumes that conformational angles can take only certain values. It can be used to generate trial conformations, for which energies can be computed using molecular mechanics. This assumption is physically reasonable while allowing statistical averages to be computed easily. This model is used to derive simple analytic equations that predict polymer properties based on a few values, such as the preferred angle... [Pg.308]

Ah initio calculations of polymer properties are either simulations of oligomers or band-structure calculations. Properties often computed with ah initio methods are conformational energies, polarizability, hyperpolarizability, optical properties, dielectric properties, and charge distributions. Ah initio calculations are also used as a spot check to verify the accuracy of molecular mechanics methods for the polymer of interest. Such calculations are used to parameterize molecular mechanics force fields when existing methods are insulficient, which does not happen too often. [Pg.310]

The property to be predicted must be considered when choosing the method for simulating a polymer. Properties can be broadly assigned into one of two categories material properties, primarily a function of the nature of the polymer chain itself, or specimen properties, primarily due to the size, shape, and phase... [Pg.310]

The following sections discuss the prediction of a selection of polymer properties. This listing is by no means comprehensive. The sources listed at the end of this chapter provide a much more thorough treatment. [Pg.311]

J. Bicerano, Prediction of Polymer Properties Marcel Dekker, New York (1996). Polymeric Systems, Adv. Chem. Phys. vol 94 (1996). [Pg.315]

CHEOPS (we tested Version 3.0.1) is a program for predicting polymer properties. It consists of two programs The analysis program allows the user to draw the repeat unit structure and will then compute a whole list of properties the synthesis program allows the user to specify a class of polymers and desired properties and will then try the various permutations of the functional groups to find ones that fit the requirements. On a Pentium Pro 200 system, the analysis computations were essentially instantaneous and the synthesis computations could take up to a few minutes. There was no automated way to transfer information between the two programs. [Pg.353]

The third approach employs modifications of the polymer s physical properties and/or resist processing to minimize contaminant absorption, and is described in the section, "Polymer Properties and Lithographic Performance". [Pg.128]

Polymer Properties and Lithographic Performance in Chemically Amplified Resins. [Pg.130]

P. Molyneux, Water-Soluble Sjnthetle Polymers Properties and Behavior, Vols. I and II, CRC Press, Boca Raton, Fla., 1982. [Pg.322]

The vast majority of all commercially prepared acryUc polymers are copolymers of an acryUc ester monomer with one or more different monomers. Copolymerization gready increases the range of available polymer properties and has led to the development of many different resins suitable for a broad variety of appHcations. Several review articles are available (84,85). [Pg.166]

The growth of polyolefin fibers continues. Advances in olefin polymerization provide a wide range of polymer properties to the fiber producer. Inroads into new markets are being made through improvements in stabilization, and new and improved methods of extmsion and production, including multicomponent extmsion and spunbonded and meltblown nonwovens. [Pg.312]

R. J. Samuels, Structural Polymer Properties Wiley-Interscience, New York, 1974. [Pg.322]

The mechanical piopeities of stmctuial foams and thek variation with polymer composition and density has been reviewed (103). The variation of stmctural foam mechanical properties with density as a function of polymer properties is extracted from stress—strain curves and, owkig to possible anisotropy of the foam, must be considered apparent data. These relations can provide valuable guidance toward arriving at an optimum stmctural foam, however. [Pg.413]

A substantial fraction of commercially prepared methacrylic polymers are copolymers. Monomeric acryUc or methacrylic esters are often copolymerized with one another and possibly several other monomers. Copolymerization greatiy increases the range of available polymer properties. The aH-acryhc polymers tend to be soft and tacky the aH-methacryhc polymers tend to be hard and brittie. By judicious adjustment of the amount of each type of monomer, polymers can be prepared at essentially any desired hardness or flexibiUty. Small amounts of specially functionalized monomers are often copolymerized with methacrylic monomers to modify or improve the properties of the polymer directiy or by providing sites for further reactions. Table 9 lists some of the more common functional monomers used for the preparation of methacrylic copolymers. [Pg.264]

MgCl2-Supported Catalysts. Examination of polymerizations with TiCl catalysts has estabUshed that only a small percentage of titanium located on lateral faces, edges, and along crystal defects is active (52) (see Titanium and titanium alloys). This led to the recognition that much of the catalyst mass acted only as a support, promoting considerable activity aimed at finding a support for active titanium that would not be detrimental to polymer properties. [Pg.410]

Mechanical properties of plastics can be determined by short, single-point quaUty control tests and longer, generally multipoint or multiple condition procedures that relate to fundamental polymer properties. Single-point tests iaclude tensile, compressive, flexural, shear, and impact properties of plastics creep, heat aging, creep mpture, and environmental stress-crackiag tests usually result ia multipoint curves or tables for comparison of the original response to post-exposure response. [Pg.153]

Creep, creep mpture, and stress relaxation tests are multiple-point tests requiring long periods of time (1000 h min) to generate useflil data these are standard tests for determining more fundamental polymer properties (202,203). Data for these tests are generated under several... [Pg.153]


See other pages where Properties polymer is mentioned: [Pg.307]    [Pg.307]    [Pg.308]    [Pg.323]    [Pg.345]    [Pg.66]    [Pg.728]    [Pg.121]    [Pg.315]    [Pg.433]    [Pg.379]    [Pg.386]    [Pg.236]    [Pg.27]    [Pg.28]    [Pg.42]    [Pg.248]    [Pg.408]    [Pg.426]   
See also in sourсe #XX -- [ Pg.10 , Pg.54 ]

See also in sourсe #XX -- [ Pg.10 , Pg.54 ]




SEARCH



© 2024 chempedia.info