Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Diene monomer polymerization

Many patents 81 95 and papers 45 96 104) deal with thermal polymerization. In the case of diene monomer polymerizations (partially miscible solutions yielding oligomers of Mn 500 and polymers of Mn = 1500-11000), or vinyl acetate polymerization (fully miscible solutions yield polymers of Mn = 500-4000) the dependence of yield, polydispersity and functionality has been studied in dependence on various reaction parameters (temperature, time, solvent, etc.). [Pg.179]

The use of alkaU metals for anionic polymerization of diene monomers is primarily of historical interest. A patent disclosure issued in 1911 (16) detailed the use of metallic sodium to polymerize isoprene and other dienes. Independentiy and simultaneously, the use of sodium metal to polymerize butadiene, isoprene, and 2,3-dimethyl-l,3-butadiene was described (17). Interest in alkaU metal-initiated polymerization of 1,3-dienes culminated in the discovery (18) at Firestone Tire and Rubber Co. that polymerization of neat isoprene with lithium dispersion produced high i7j -l,4-polyisoprene, similar in stmcture and properties to Hevea natural mbber (see ELASTOLffiRS,SYNTHETic-POLYisoPRENE Rubber, natural). [Pg.236]

Anionic polymerization of vinyl monomers can be effected with a variety of organometaUic compounds alkyllithium compounds are the most useful class (1,33—35). A variety of simple alkyllithium compounds are available commercially. Most simple alkyllithium compounds are soluble in hydrocarbon solvents such as hexane and cyclohexane and they can be prepared by reaction of the corresponding alkyl chlorides with lithium metal. Methyllithium [917-54-4] and phenyllithium [591-51-5] are available in diethyl ether and cyclohexane—ether solutions, respectively, because they are not soluble in hydrocarbon solvents vinyllithium [917-57-7] and allyllithium [3052-45-7] are also insoluble in hydrocarbon solutions and can only be prepared in ether solutions (38,39). Hydrocarbon-soluble alkyllithium initiators are used directiy to initiate polymerization of styrene and diene monomers quantitatively one unique aspect of hthium-based initiators in hydrocarbon solution is that elastomeric polydienes with high 1,4-microstmcture are obtained (1,24,33—37). Certain alkyllithium compounds can be purified by recrystallization (ethyllithium), sublimation (ethyllithium, /-butyUithium [594-19-4] isopropyllithium [2417-93-8] or distillation (j -butyUithium) (40,41). Unfortunately, / -butyUithium is noncrystaUine and too high boiling to be purified by distiUation (38). Since methyllithium and phenyllithium are crystalline soUds which are insoluble in hydrocarbon solution, they can be precipitated into these solutions and then redissolved in appropriate polar solvents (42,43). OrganometaUic compounds of other alkaU metals are insoluble in hydrocarbon solution and possess negligible vapor pressures as expected for salt-like compounds. [Pg.238]

Aromatic radical anions, such as lithium naphthalene or sodium naphthalene, are efficient difunctional initiators (eqs. 6,7) (3,20,64). However, the necessity of using polar solvents for their formation and use limits their utility for diene polymerization, since the unique abiUty of lithium to provide high 1,4-polydiene microstmcture is lost in polar media (1,33,34,57,63,64). Consequentiy, a significant research challenge has been to discover a hydrocarbon-soluble dilithium initiator which would initiate the polymerization of styrene and diene monomers to form monomodal a, CO-dianionic polymers at rates which are faster or comparable to the rates of polymerization, ie, to form narrow molecular weight distribution polymers (61,65,66). [Pg.239]

The reversible addition of sodium bisulfite to carbonyl groups is used ia the purification of aldehydes. Sodium bisulfite also is employed ia polymer and synthetic fiber manufacture ia several ways. In free-radical polymerization of vinyl and diene monomers, sodium bisulfite or metabisulfite is frequentiy used as the reduciag component of a so-called redox initiator (see Initiators). Sodium bisulfite is also used as a color preventative and is added as such during the coagulation of crepe mbber. [Pg.150]

Elastomers. Ethylene—propylene terpolymer (diene monomer) elastomers (EPDM) use a variety of third monomers during polymerization (see Elastomers, ethyiene-propylene-diene rubber). Ethyhdenenorbomene (ENB) is the most important of these monomers and requires dicyclopentadiene as a precursor. ENB is synthesized in a two step preparation, ie, a Diels-Alder reaction of CPD (via cracking of DCPD) with butadiene to yield 5-vinylbicyclo[2.2.1]-hept-2-ene [3048-64-4] (7) where the external double bond is then isomerized catalyticaHy toward the ring yielding 5-ethyhdenebicyclo[2.2.1]-hept-2-ene [16219-75-3] (ENB) (8) (60). [Pg.434]

Conjugated dienes can be polymerized just as simple alkenes can (Section 7.10). Diene polymers are structurally more complex than simple alkene polymers, though, because double bonds remain every four carbon atoms along the chain, leading to the possibility of cis-trans isomers. The initiator (In) for the reaction can be either a radical, as occurs in ethylene polymerization, or an acid. Note that the polymerization is a 1,4-addition of the growing chain to a conjugated diene monomer. [Pg.498]

The polymerization of nonconjugated diene monomers might be expected to afford polymer chains with pendant unsaturation and ultimately, on further reaction of these groups, crosslinked insoluble polymer networks. Thus, the finding by Butler et a .,, 03, n5 that polymerizations of diallylammonium salts, of general structure 8 [e.g. diallyldimethylammonium chloride (9)] gave linear saturated polymers, was initially considered surprising. [Pg.186]

A vast range of symmetrical and unsymmetrieal 1,6-diene monomers has now been prepared and polymerized and the generality of the process is well established.98,1 A summary of symmetrical 1,6-dienc structures, known to give cyclopolymerization, is presented in Table 4.4 In many cases, the structure of the repeat units has not been rigorously established. Often the only direct evidence for cyclopolymerization is the solubility of the polymer or the absence of residual unsaturalion. In these cases the proposed repeat unit structures are speculative. [Pg.187]

Of the major methods for living radical polymerization, NMP appears the most successful for polymerization of the diene monomers. There are a number of reports on the use of NMP of diene monomers (B, I) with TEMPO,188,1103 861 4, cw and other nitroxides.127 High reaction temperatures (120-135 °C) were employed in all cases. The ratio of 1,2- 1,4-cis 1,4-trans structures obtained is similar to that observed in conventional radical polymerization (Section 4.3.2). [Pg.481]

Shorter chain dienes have an increased propensity to form stable five-, six-, and seven-membered rings. This thermodynamically controlled phenomenon is known as the Thorpe-Ingold effect.15 Since ADMET polymerization is performed over extended time periods under equilibrium conditions, it is ultimately thermodynamics rather than kinetics that determine the choice between a selected diene monomer undergoing either polycondensation or cyclization. [Pg.435]

ADMET is quite possibly the most flexible transition-metal-catalyzed polymerization route known to date. With the introduction of new, functionality-tolerant robust catalysts, the primary limitation of this chemistry involves the synthesis and cost of the diene monomer that is used. ADMET gives the chemist a powerful tool for the synthesis of polymers not easily accessible via other means, and in this chapter, we designate the key elements of ADMET. We detail the synthetic techniques required to perform this reaction and discuss the wide range of properties observed from the variety of polymers that can be synthesized. For example, branched and functionalized polymers produced by this route provide excellent models (after quantitative hydrogenation) for the study of many large-volume commercial copolymers, and the synthesis of reactive carbosilane polymers provides a flexible route to solvent-resistant elastomers with variable properties. Telechelic oligomers can also be made which offer an excellent means for polymer modification or incorporation into block copolymers. All of these examples illustrate the versatility of ADMET. [Pg.435]

Most addition polymerizations involve vinyl or diene monomers. The opening of a double bond can be catalyzed in several ways. Free-radical polymerization is the most common method for styrenic monomers, whereas coordination metal... [Pg.478]

Ethene/propene/diene monomer rubbers (EPDM) are elastomeric terpoly-mers used in the production of sealants, tubing and gaskets and, in the USA, is used in roofing applications. As the name suggests they are prepared by the polymerization of mixtures of ethene, propene and diene monomers, to form cross-links. By far the most common diene used is 5-ethylidene-2-norbomene (ENB). [Pg.266]

This study has demonstrated that a cyclic pyrroline polymer could be prepared by a free radical initiation of the corresponding exocyclic diene monomer. The polymerization was shown to proceed predominantly by 1,4-addition as expected from a free radical initiator with diene monomers. [Pg.137]

Hydroboration polymerization between diene monomers and 2,4,6-trimethylphenylborane (mesitylborane)6 or 2,4,6-triisopropylphenylborane (tripyl-borane)7 gave organoboron main-chain polymers (scheme 3). The polymerization was... [Pg.140]

Several experimental facts have been rationalized in terms of different n-allyl insertion mechanisms, depending on the nature of the catalytic systems and the diene monomer, mainly by the extensive work of Porri and co-workers, as reviewed in Refs. 181 and 182, and Taube and co-workers, as reviewed in Ref. 183. A widely accepted scheme for cis-1,4 and 1,2 polymerizations of conjugated dienes is reported in Scheme 1.5. In particular, it has been... [Pg.57]

The iso- and syndiotactic isomerism in the insertion polymerization of dienes (for 1,2 polymerization of generic dienes and for cis-1,4 polymerization of 4-monosubstituted or of 1,4-disubstituted monomers) would be determined, according to the polymerization scheme proposed by Porri and co-workers,181 182 by the relative orientations of the two ligands (diene monomer and allyl terminal of the growing chain) in the preinsertion catalytic intermediates. [Pg.58]

Diene polymers refer to polymers synthesized from monomers that contain two carbon-carbon double bonds (i.e., diene monomers). Butadiene and isoprene are typical diene monomers (see Scheme 19.1). Butadiene monomers can link to each other in three ways to produce ds-1,4-polybutadiene, trans-l,4-polybutadi-ene and 1,2-polybutadiene, while isoprene monomers can link to each other in four ways. These dienes are the fundamental monomers which are used to synthesize most synthetic rubbers. Typical diene polymers include polyisoprene, polybutadiene and polychloroprene. Diene-based polymers usually refer to diene polymers as well as to those copolymers of which at least one monomer is a diene. They include various copolymers of diene monomers with other monomers, such as poly(butadiene-styrene) and nitrile butadiene rubbers. Except for natural polyisoprene, which is derived from the sap of the rubber tree, Hevea brasiliensis, all other diene-based polymers are prepared synthetically by polymerization methods. [Pg.547]

Sulfur-containing spiro orthocarbonates, cationic polymerization of, 23 729 Sulfur-cured EPDM, 21 8041. See also Ethylene- propylene-diene monomer (EPDM) rubber Sulfur deposits... [Pg.903]

The additional complexity present in block copolymer synthesis is the order of monomer polymerization and/or the requirement in some cases to modify the reactivity of the propagating center during the transition from one block to the next block. This is due to the requirement that the nucleophilicity of the initiating block be equal or greater than the resulting propagating chain end of the second block. Therefore the synthesis of block copolymers by sequential polymerization generally follows the order dienes/styrenics before vinylpyridines before meth(acrylates) before oxiranes/siloxanes. As a consequence, styrene-MMA block copolymers should be prepared by initial polymerization of styrene followed by MMA, while PEO-MMA block copolymers should be prepared by... [Pg.50]

The alkyllithium-initiated, anionic polymerization of vinyl and diene monomers can often be performed without the incursion of spontaneous termination or chain transfer reactions (1). The non-terminating nature of these reactions has provided methods for the synthesis of polymers with predictable molecular weights and narrow molecular weight distributions (2). In addition, these polymerizations generate polymer chains with stable, carbanionic chain ends which, in principle, can be converted into a diverse array of functional end groups using the rich and varied chemistry of organolithium compounds (3). [Pg.139]

Dibenzothiophene derivatives have been used as co-catalysts in the addition polymerization of vinyl and diene monomers. Dibenzothiophene itself, in conjunction with vanadium oxychloride, is effective in initiating the polymerization of isobutylene, - although when incorporated in a Ziegler catalyst system, competition between donor and monomer for the most electrophilic sites results in deactivation of the catalyst. Despite the fact that 2-vinyl- - - and 4-vinyldibenzothiophene - readily undergo thermal polymerization,... [Pg.285]

Later, Tieke reported the UV- and y-irradiation polymerization of butadiene derivatives crystallized in perovskite-type layer structures [21,22]. He reported the solid-state polymerization of butadienes containing aminomethyl groups as pendant substituents that form layered perovskite halide salts to yield erythro-diisotactic 1,4-trans polymers. Interestingly, Tieke and his coworker determined the crystal structure of the polymerized compounds of some derivatives by X-ray diffraction [23,24]. From comparative X-ray studies of monomeric and polymeric crystals, a contraction of the lattice constant parallel to the polymer chain direction by approximately 8% is evident. Both the carboxylic acid and aminomethyl substituent groups are in an isotactic arrangement, resulting in diisotactic polymer chains. He also referred to the y-radiation polymerization of molecular crystals of the sorbic acid derivatives with a long alkyl chain as the N-substituent [25]. More recently, Schlitter and Beck reported the solid-state polymerization of lithium sorbate [26]. However, the details of topochemical polymerization of 1,3-diene monomers were not revealed until very recently. [Pg.267]

Figure 1 summarizes the chemical structures of the topochemically polymerizable 1,3-diene monomers providing stereoregular 1,4-trans polymer (Scheme 6) [ 16]. Most of the polymerizable monomers contain benzyl, naphthylmethyl, and long alkyl-chain substituents in their chemical structures. The (ZyZ)-, (E,Z)-, and ( , )-muconic and sorbic acids as well as the other diene carboxylic acids are used as the ester, amide, and ammonium derivatives. In contrast to this, the carboxylic acids themselves have crystal structures unfavorable for polymerization while they undergo [2-1-2] photodimerization, as has already been described in the preceding sections. Figure 1 summarizes the chemical structures of the topochemically polymerizable 1,3-diene monomers providing stereoregular 1,4-trans polymer (Scheme 6) [ 16]. Most of the polymerizable monomers contain benzyl, naphthylmethyl, and long alkyl-chain substituents in their chemical structures. The (ZyZ)-, (E,Z)-, and ( , )-muconic and sorbic acids as well as the other diene carboxylic acids are used as the ester, amide, and ammonium derivatives. In contrast to this, the carboxylic acids themselves have crystal structures unfavorable for polymerization while they undergo [2-1-2] photodimerization, as has already been described in the preceding sections.

See other pages where Diene monomer polymerization is mentioned: [Pg.607]    [Pg.607]    [Pg.238]    [Pg.364]    [Pg.539]    [Pg.12]    [Pg.580]    [Pg.193]    [Pg.115]    [Pg.255]    [Pg.393]    [Pg.12]    [Pg.138]    [Pg.139]    [Pg.140]    [Pg.11]    [Pg.18]    [Pg.60]    [Pg.196]    [Pg.198]    [Pg.205]    [Pg.310]    [Pg.521]    [Pg.522]    [Pg.264]    [Pg.267]   


SEARCH



Anionic polymerization diene monomers

Diene monomers

Diene monomers Included polymerization

Diene polymerization

Dienes, polymerization

Monomers, polymerization

© 2024 chempedia.info