Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Carbanions, stable

Strangely enough, cyanide ion is also involved in one special reaction giving an a-hydroxy-ketone. Can you show how the adduct A of benzaldehyde and cyanide ion can give a stable carbanion ... [Pg.45]

Sulfur ylides contain a carbanion, which is stabilizea oy an adjacent positively-charged sulfur. Ylides derived from alkylsulfonium salts are usually generated and utilized at low temperatures. Oxosulfonium ylides are, however, stable near room temperature. The most common method of ylide formation is deprotonation of a sulfonium salt. What has been said... [Pg.7]

An interesting case are the a,/i-unsaturated ketones, which form carbanions, in which the negative charge is delocalized in a 5-centre-6-electron system. Alkylation, however, only occurs at the central, most nucleophilic position. This regioselectivity has been utilized by Woodward (R.B. Woodward, 1957 B.F. Mundy, 1972) in the synthesis of 4-dialkylated steroids. This reaction has been carried out at high temperature in a protic solvent. Therefore it yields the product, which is formed from the most stable anion (thermodynamic control). In conjugated enones a proton adjacent to the carbonyl group, however, is removed much faster than a y-proton. If the same alkylation, therefore, is carried out in an aprotic solvent, which does not catalyze tautomerizations, and if the temperature is kept low, the steroid is mono- or dimethylated at C-2 in comparable yield (L. Nedelec, 1974). [Pg.25]

The addition of large enolate synthons to cyclohexenone derivatives via Michael addition leads to equatorial substitution. If the cyclohexenone conformation is fixed, e.g. as in decalones or steroids, the addition is highly stereoselective. This is also the case with the S-addition to conjugated dienones (Y. Abe, 1956). Large substituents at C-4 of cyclic a -synthons direct incoming carbanions to the /rans-position at C-3 (A.R. Battersby, 1960). The thermodynamically most stable products are formed in these cases, because the addition of 1,3-dioxo compounds to activated double bonds is essentially reversible. [Pg.72]

The Birch reductions of C C double bonds with alkali metals in liquid ammonia or amines obey other rules than do the catalytic hydrogenations (D. Caine, 1976). In these reactions regio- and stereoselectivities are mainly determined by the stabilities of the intermediate carbanions. If one reduces, for example, the a, -unsaturated decalone below with lithium, a dianion is formed, whereof three different conformations (A), (B), and (C) are conceivable. Conformation (A) is the most stable, because repulsion disfavors the cis-decalin system (B) and in (C) the conjugation of the dianion is interrupted. Thus, protonation yields the trans-decalone system (G. Stork, 1964B). [Pg.103]

Facile reaction of a carbon nucleophile with an olefinic bond of COD is the first example of carbon-carbon bond formation by means of Pd. COD forms a stable complex with PdCl2. When this complex 192 is treated with malonate or acetoacetate in ether under heterogeneous conditions at room temperature in the presence of Na2C03, a facile carbopalladation takes place to give the new complex 193, formed by the introduction of malonate to COD. The complex has TT-olefin and cr-Pd bonds. By the treatment of the new complex 193 with a base, the malonate carbanion attacks the cr-Pd—C bond, affording the bicy-clo[6.1,0]-nonane 194. The complex also reacts with another molecule of malonate which attacks the rr-olefin bond to give the bicyclo[3.3.0]octane 195 by a transannulation reaction[l2.191]. The formation of 194 involves the novel cyclopropanation reaction of alkenes by nucleophilic attack of two carbanions. [Pg.47]

Ordinarily nucleophilic addition to the carbon-carbon double bond of an alkene is very rare It occurs with a p unsaturated carbonyl compounds because the carbanion that results IS an enolate which is more stable than a simple alkyl anion... [Pg.777]

Thioglycohc acid is recommended as a cocatalyst with strong mineral acid in the manufacture of bisphenol A by the condensation of phenol and acetone. The effect of the mercapto group (mercaptocarboxyhc acid) is attributed to the formation of a more stable carbanion intermediate of the ketone that can alkylate the phenol ring faster. The total amount of the by-products is considerably reduced (52). [Pg.6]

In theory two carbanions, (189) and (190), can be formed by deprotonation of 3,5-dimethylisoxazole with a strong base. On the basis of MINDO/2 calculations for these two carbanions, the heat of formation of (189) is calculated to be about 33 kJ moF smaller than that of (190), and the carbanion (189) is thermodynamically more stable than the carbanion (190). The calculation is supported by the deuterium exchange reaction of 3,5-dimethylisoxazole with sodium methoxide in deuterated methanol. The rate of deuterium exchange of the 5-methyl protons is about 280 times faster than that of the 3-methyl protons (AAF = 13.0 kJ moF at room temperature) and its activation energy is about 121 kJ moF These results indicate that the methyl groups of 3,5-dimethylisoxazole are much less reactive than the methyl group of 2-methylpyridine and 2-methylquinoline, whose activation energies under the same reaction conditions were reported to be 105 and 88 kJ moF respectively (79H(12)1343). [Pg.49]

There are at least two mechanisms available for aziridine cis-trans isomerism. The first is base-catalyzed and proceeds via an intermediate carbanion (235). The second mechanism can be either thermally or photochemically initiated and proceeds by way of an intermediate azomethine ylide. The absence of a catalytic effect and interception of the 1,3-dipole intermediate provide support for this route. A variety of aziridinyl ketones have been found to undergo equilibration when subjected to base-catalyzed conditions (65JA1050). In most of these cases the cis isomer is more stable than the trans. Base-catalyzed isotope exchange has also been observed in at least one molecule which lacks a stabilizing carbonyl group (72TL3591). [Pg.72]

The C-2 equatorial proton is selectively removed when 1,3-ditiiianes are deprotonated. Furthermore, if the resulting carbanion is protonated, there is a strong preference for equatorial protonation, even if fliis leads to a less stable axial orientation for the 2-substituent. [Pg.445]

Protonation of the a-carbanion (50), which is formed both in the reduction of enones and ketol acetates, probably first affords the neutral enol and is followed by its ketonization. Zimmerman has discussed the stereochemistry of the ketonization of enols and has shown that in eertain cases steric factors may lead to kinetically controlled formation of the thermodynamically less stable ketone isomer. Steroidal unsaturated ketones and ketol acetates that could form epimeric products at the a-carbon atom appear to yield the thermodynamically stable isomers. In most of the cases reported, however, equilibration might have occurred during isolation of the products so that definitive conclusions are not possible. [Pg.35]

Most dienones that have been reduced have structures such that they cannot give epimeric products. However, reduction of 17 -hydroxy-7,17a-dimethyl-androsta-4,6-dien-3-one (63) affords 17 -hydroxy-7j9,17a-dimethylandrost-4-en-3-one (64), the thermodynamically most stable product, albeit in only 16% yield. The remainder of the reduction product was not identified. Presumably the same stereoelectronic factors that control protonation of the / -carbon of the allyl carbanion formed from an enone control the stereochemistry of the protonation of the (5-carbon of the dienyl carbanion formed from a linear dienone. The formation of the 7 -methyl compound from compound (63) would be expected on this basis. [Pg.36]

NMR spectroscopy is ideal for detecting charged fluorinated intermediates and has been applied to the study of increasingly stable carbocation and carbanion species. Olah [164, 165] has generated stable fluorocarbocations m SbFj/SOjClF at low temperatures The relatively long-lived perfluoro-rerr-butyl anion has been prepared as both the cesium and tris(dimethylamino)sulfonium (TAS) salts by several groups [166, 167, 168], Chemical shifts of fluonnated carbocations and carbanions are listed m Table 23. [Pg.1067]

The transaldolase functions primarily to make a useful glycolytic substrate from the sedoheptulose-7-phosphate produced by the first transketolase reaction. This reaction (Figure 23.35) is quite similar to the aldolase reaction of glycolysis, involving formation of a Schiff base intermediate between the sedohep-tulose-7-phosphate and an active-site lysine residue (Figure 23.36). Elimination of the erythrose-4-phosphate product leaves an enamine of dihydroxyacetone, which remains stable at the active site (without imine hydrolysis) until the other substrate comes into position. Attack of the enamine carbanion at the carbonyl carbon of glyceraldehyde-3-phosphate is followed by hydrolysis of the Schiff base (imine) to yield the product fructose-6-phosphate. [Pg.768]

Obtain the energies of the different possible carbanions alleyne-H+). Which one is most stable Does it correspond to removal of the most electron-poor proton Examine the geometry and atomic charges of the favored carbanion. Where is the negative charge Draw the Lewis structure of this ion. Predict the structure of the Sn2 product. [Pg.118]

Intramolecular cyclization of 2-phenysulfonylmethyl lactam 3 took place upon reaction with lithium hexamethyldisilazan via generating its a-sulfonyl carbanion to give a cyclized postulated intermediate that can be quenched with trimethylchlorosilane to afford the stable silyl ketal 4. The later ketal was desulfonylated by Raney-Ni and desilylated through treatment with tetrabutyl ammonium fluoride (BU4NF) to afford the carbacephem 5 (94M71) (Scheme 1). [Pg.73]

Nucleophilic addition of the base to the intermediate 2 leads to ring opening. With a symmetrically substituted cyclopropanone, cleavage of either Ca-CO bond leads to the same product. With unsymmetrical cyclopropanones, that bond is broken preferentially that leads to the more stable carbanion 5 ... [Pg.110]

Unlike regular aziridine-2-carboxylic esters, aziridine-2-carboxylic thioester 174 (Scheme 3.62) forms stable carbanions at the 2-position upon treatment with base [13b, 122]. Thus, electrophilic alkylations of aziridine 174 afforded products 175. The reactions were highly diastereoselective, affording 175 in moderate to good... [Pg.97]

In the same way, the addition of monomer yields the radical ions which possess the most stable carbanion ends and the most stable radical ends, e.g.,... [Pg.152]

D Chiral or achiral. v/H-carbanions with an additional, configurationally stable stereo-genic center. Very often the additional stereogenic center is in close vicinity (a- or -position) to the anionic center. [Pg.119]

D Achiral non-.s/C-carbanions with a configurationally stable stereogenic center somewhere in the reagent. [Pg.119]


See other pages where Carbanions, stable is mentioned: [Pg.669]    [Pg.91]    [Pg.669]    [Pg.91]    [Pg.81]    [Pg.147]    [Pg.5]    [Pg.7]    [Pg.12]    [Pg.28]    [Pg.56]    [Pg.194]    [Pg.318]    [Pg.240]    [Pg.240]    [Pg.289]    [Pg.49]    [Pg.152]    [Pg.324]    [Pg.5]    [Pg.34]    [Pg.41]    [Pg.303]    [Pg.208]    [Pg.44]    [Pg.150]    [Pg.251]    [Pg.119]    [Pg.121]   
See also in sourсe #XX -- [ Pg.326 ]




SEARCH



© 2024 chempedia.info