Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Alkene isolated

Numerous dienes and polyenes have been subjected to hydroxymercuration-demercuration.311 With nonconjugated dienes, the products can usually be predicted by applying what one has learned from the corresponding simple alkenes. Isolated double bonds are more reactive than conjugated double bonds and frequently one of the double bonds is sufficiently more reactive than the others that monohydroxy-lated products can be obtained. Improvements in selectivity have been reported by using mercury(II) tri-fluoroacetate339 or by adding sodium lauryl sulfate.340... [Pg.303]

In the synthesis of the nonamethoxy-l-pentacosene (622), a naturally ocurring poly-methoxy-l-alkene isolated from the blue-green alga Tolypothrix conglutinata var. chlorata, the backbone is assembled using two aldehydes (620 and 621) (Scheme 91) [146]. [Pg.243]

Figure 9.8 Examples of sesterterpenes, triterpenes and polyunsaturated linear alkenes isolated from Rhizosolenia setigera (Sinninghe Damste... Figure 9.8 Examples of sesterterpenes, triterpenes and polyunsaturated linear alkenes isolated from Rhizosolenia setigera (Sinninghe Damste...
Nishio, T, Photocycloaddition of N-alkoxycarbonylbenzoxazole-2-thiones to alkenes isolation of stable aminothietanes, /. Chem. Soc., Perkin Trans. 1,1151, 1999. [Pg.2184]

Another method for the hydroxylation of the etliylenic linkage consists in treatment of the alkene with osmium tetroxide in an inert solvent (ether or dioxan) at room temperature for several days an osmic ester is formed which either precipitates from the reaction mixture or may be isolated by evaporation of the solvent. Hydrolysis of the osmic ester in a reducing medium (in the presence of alkaline formaldehyde or of aqueous-alcoholic sodium sulphite) gives the 1 2-glycol and osmium. The glycol has the cis structure it is probably derived from the cyclic osmic ester ... [Pg.894]

In eontrast, dialkylhalonium salts sueh as dimethylbromonium and dimethyliodonium fluoroantimonate, whieh we prepared from excess alkyl halides with antimony pentafluoride or fluoroantimonie acid and isolated as stable salts (the less-stable chloronium salts were obtained only in solution), are very effective alkylating agents for heteroatom eompounds (Nu = R2O, R2S, R3N, R3P, ete.) and for C-alkylation (arenes, alkenes). [Pg.104]

Pd(II) compounds coordinate to alkenes to form rr-complexes. Roughly, a decrease in the electron density of alkenes by coordination to electrophilic Pd(II) permits attack by various nucleophiles on the coordinated alkenes. In contrast, electrophilic attack is commonly observed with uncomplexed alkenes. The attack of nucleophiles with concomitant formation of a carbon-palladium r-bond 1 is called the palladation of alkenes. This reaction is similar to the mercuration reaction. However, unlike the mercuration products, which are stable and isolable, the product 1 of the palladation is usually unstable and undergoes rapid decomposition. The palladation reaction is followed by two reactions. The elimination of H—Pd—Cl from 1 to form vinyl compounds 2 is one reaction path, resulting in nucleophilic substitution of the olefinic proton. When the displacement of the Pd in 1 with another nucleophile takes place, the nucleophilic addition of alkenes occurs to give 3. Depending on the reactants and conditions, either nucleophilic substitution of alkenes or nucleophilic addition to alkenes takes place. [Pg.21]

The transmetallation of various organometallic compounds (Hg, Tl, Sn, B, Si, etc.) with Pd(II) generates the reactive cr-aryl, alkenyl, and alkyl Pd compounds. These carbopalladation products can be used without isolation for further reactions. Pd(II) and Hg(II) salts have similar reactivity toward alkenes and aromatic compounds, but Hg(II) salts form stable mercuration products with alkenes and aromatic rings. The mercuration products are isolated and handled easily. On the other hand, the corresponding palladation products are too reactive to be isolated. The stable mercuration products can be used for various reactions based on facile transmetallation with Pd(II) salts to generate the very reactive palladation products 399 and 400 in rim[364,365]. [Pg.79]

Aldehydes are easily oxidized to carboxylic acids under conditions of ozonide hydroly SIS When one wishes to isolate the aldehyde itself a reducing agent such as zinc is included during the hydrolysis step Zinc reduces the ozonide and reacts with any oxi dants present (excess ozone and hydrogen peroxide) to prevent them from oxidizing any aldehyde formed An alternative more modem technique follows ozone treatment of the alkene m methanol with reduction by dimethyl sulfide (CH3SCH3)... [Pg.263]

When the objective is analytical the products of ozonolysis are isolated and identi lied thereby allowing the structure of the alkene to be deduced In one such example an alkene having the molecular formula C Hig was obtained from a chemical reaction and was then subjected to ozonolysis giving acetone and 2 2 dimethylpropanal as the products... [Pg.264]

Alkenes are cleaved to carbonyl compounds by ozonolysis This reaction IS useful both for synthesis (preparation of aldehydes ketones or car boxyhc acids) and analysis When applied to analysis the carbonyl com pounds are isolated and identified allowing the substituents attached to the double bond to be deduced... [Pg.274]

Our discussion of chemical reactions of alkadienes will be limited to those of conju gated dienes The reactions of isolated dienes are essentially the same as those of individual alkenes The reactions of cumulated dienes are—like their preparation— so specialized that their treatment is better suited to an advanced course m organic chemistry... [Pg.405]

FIGURE 22 5 The diazo mum ion generated by treatment of a primary al kylamine with nitrous acid loses nitrogen to give a car bocation The isolated prod ucts are derived from the carbocation and include in this example alkenes (by loss of a proton) and an al cohol (nucleophilic capture by water)... [Pg.944]

The addition proceeds in three discrete steps and the intermediates can be isolated. Simple alkenes are less reactive than alkynes and do not undergo the addition to aHylic boranes, but electron-rich alkyl vinyl ethers react at moderate temperatures to give 1,4-dienes or dienyl alcohols (440). [Pg.321]

Alkenes with between 4 and 24 carbon atoms react with phenol to produce an unrefined phenol—alkylphenol mixture. This mixture is fed to the distillation train where the phenol is removed for recycle and the product is isolated. The product is then stored in heated tanks made of stainless steel or phenoHc resin lined carbon steel. These tanks are blanketed with inert gas to avoid product discoloration associated with oxidation. [Pg.64]

Dialkylphenols are also produced in specialized plants. These plants combine complex batch reactors with vacuum distillation trains or other recovery systems. Alkenes with carbon numbers between 4 and 9 react with phenol to make an unrefined alkylphenol mixture, which is fed into the recovery section where very high purity product is isolated. The product is stored, handled, and shipped just as are the monoalkylphenols. [Pg.64]

Among the appHcations of lower valent titanium, the McMurry reaction, which involves the reductive coupling of carbonyl compounds to produce alkenes, is the most weU known. An excellent review of lower valent titanium reactions is available (195). Titanium(II)-based technology is less well known. A titanium(II)-based complex has been used to mediate a stetio- and regio-specific reduction of isolated conjugated triple bonds to the corresponding polyenes (196). [Pg.153]

In 1959 Carboni and Lindsay first reported the cycloaddition reaction between 1,2,4,5-tetrazines and alkynes or alkenes (59JA4342) and this reaction type has become a useful synthetic approach to pyridazines. In general, the reaction proceeds between 1,2,4,5-tetrazines with strongly electrophilic substituents at positions 3 and 6 (alkoxycarbonyl, carboxamido, trifluoromethyl, aryl, heteroaryl, etc.) and a variety of alkenes and alkynes, enol ethers, ketene acetals, enol esters, enamines (78HC(33)1073) or even with aldehydes and ketones (79JOC629). With alkenes 1,4-dihydropyridazines (172) are first formed, which in most cases are not isolated but are oxidized further to pyridazines (173). These are obtained directly from alkynes which are, however, less reactive in these cycloaddition reactions. In general, the overall reaction which is presented in Scheme 96 is strongly... [Pg.50]

Pyrazoles are formed when the diazo compounds react with alkynes or with functionalized alkenes, viz. the enols of /3-diketones. Pyrazolenines (353 Section 4.04.2.2.1) are isolated from disubstituted diazomethanes. Many pyrazoles, difficult to obtain by other methods, have been prepared by this procedure, for example 3-cyanopyrazole (616) is obtained from cyanoacetylene and diazomethane (7iJCS(C)2i47), 3,4,5-tris(trifiuoromethyl)pyrazole (617) from trifluorodiazoethane and hexafluoro-2-butyne (8lAHC(28)l), and 4-phenyl-3-triflylpyrazole (618 R =H) from phenyltriflylacetylene and diazomethane (82MI40402). An excess of diazomethane causes iV-methylation of the pyrazole (618 R = H) and the two isomers (618 R = Me) and (619) are formed in a ratio of 1 1. [Pg.282]

Monosubstituted hydrazones react with alkenes and alkynic compounds to yield pyrazolidines and pyrazolines, respectively (71LA(743)50, 79JOC218). Oxidation often occurs during the reaction and pyrazoles are isolated as the end product. [Pg.284]

Alkylnitro compounds when treated with acetic anhydride and triethylamine produced furoxans. With an alkene present, 2-isoxazolines are isolated (Scheme 120) (78MI41610). [Pg.95]

Nucleophilic opening of oxiranes to give ultimately 1,2-diols is usually effected without isolation of the oxirane oxiranation (epoxidation) of alkenes with unbuffered peroxy-ethanoic acid or hydrogen peroxide in methanoic acid (Section 5.05.4.2.2(/)) tends to give monoesters of 1,2-diols (e.g. 53), which can be hydrolyzed to the diols (Scheme 46). [Pg.110]

SynttMSH ol alkenes from a silyl carbanions and cartMnyl compounds In cases where separation ol sitylaloohol diastereomers (e g 4] can be achieved, pure Z or E oleflns can be Isolaled... [Pg.295]


See other pages where Alkene isolated is mentioned: [Pg.51]    [Pg.91]    [Pg.349]    [Pg.512]    [Pg.167]    [Pg.465]    [Pg.275]    [Pg.51]    [Pg.91]    [Pg.349]    [Pg.512]    [Pg.167]    [Pg.465]    [Pg.275]    [Pg.22]    [Pg.79]    [Pg.294]    [Pg.406]    [Pg.185]    [Pg.48]    [Pg.56]    [Pg.399]    [Pg.540]    [Pg.550]    [Pg.312]    [Pg.522]    [Pg.41]    [Pg.334]    [Pg.70]    [Pg.174]    [Pg.56]    [Pg.86]    [Pg.151]    [Pg.165]    [Pg.166]   
See also in sourсe #XX -- [ Pg.250 ]




SEARCH



© 2024 chempedia.info