Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Valeric production

Indeed, it was found that amyl alcohol is converted into amyl nitrite and nitrate by the action of nitric oxides resulting from the decomposition of nitrocellulose. These substances are then oxidized to form valeric acid and amyl valerate products distinguishable by their characteristic smell. [Pg.553]

Equip a 1 litre bolt-head flask with dropi)ing fuuncl and a double surface reflux condenser to the top of the latter attach a device (e.g.. Fig. II, 8, 1. c) for the absorption of the hydrogen bromide evolved. Place 100 g. (108 ml.) of dry iso-valeric acid (Section 111,80) and 12 g. of pmified red phosphorus (Section 11,50,5) in the flask. Add 255 g. (82 ml.) of dry bromine (Section 11,49,5) slowly through the dropping funnel at such a rate that little or no bromine is lost with the hydrogen bromide evolved the addition occupies 2-3 hours. Warm the reaction mixture on a water bath until the evolution of hydrogen bromide is complete and the colour of the bromine has disappeared. Pour off the liquid reaction product into a Claisen flask and distil mider the reduced pressure of a water pump. Collect the a-bromo-wo-valeryl bromide at 117-122°/25-30 mm. The yield is 150 g. [Pg.999]

Acylated Corticoids. The corticoid side-chain of (30) was converted iato the cycHc ortho ester (96) by reaction with a lower alkyl ortho ester RC(OR )2 iu benzene solution ia the presence of i ra-toluenesulfonic acid (88). Acid hydrolysis of the product at room temperature led to the formation of the 17-monoesters (97) ia nearly quantitative yield. The 17-monoesters (97) underwent acyl migration to the 21-monoesters (98) on careful heating with. In this way, prednisolone 17a,21-methylorthovalerate was converted quantitatively iato prednisolone 17-valerate, which is a very active antiinflammatory agent (89). The iatermediate ortho esters also are active. Thus, 17a,21-(l -methoxy)-pentyhdenedioxy-l,4-pregnadiene-liP-ol-3,20-dione [(96), R = CH3, R = C Hg] is at least 70 times more potent than prednisolone (89). The above conversions... [Pg.104]

Other mixed esters, eg, cellulose acetate valerate [55962-79-3] cellulose propionate valerate [67351-41-17, and cellulose butyrate valerate [53568-56-2] have been prepared by the conventional anhydride sulfuric acid methods (25). Cellulose acetate isobutyrate [67351-38-6] (44) and cellulose propionate isobutyrate [67351-40-0] (45) have been prepared with a 2inc chloride catalyst. Large amounts of catalyst and anhydride are required to provide a soluble product, and special methods of delayed anhydride addition are necessary to produce mixed esters containing the acetate moiety. Mixtures of sulfuric acid and perchloric acid are claimed to be effective catalysts for the preparation of cellulose acetate propionate in dichi oromethane solution at relatively low temperatures (46) however, such acid mixtures are considered too corrosive for large-scale productions. [Pg.252]

In a 500-ml round-bottom flask fitted with a condenser, and a heating mantle is placed a mixture of 25 g of diethyl 5-(l -carboxy-2 -oxocyclohexyl)valerate, 70 g of barium hydroxide, and 200 ml of methanol, and the mixture is refluxed for 24 hours. After cooling, the mixture is acidified (pH 4) by cautious addition of cold 10% aqueous hydrochloric acid. The acidified solution is saturated with sodium chloride and then extracted three times with 100-ml portions of chloroform. The combined chloroform extracts are dried (anhydrous magnesium sulfate) and evaporated. On vacuum distillation, the residue affords the product (about 15 g), bp 176-17870.5 mm. [Pg.100]

After further working up there is obtained an oily crystalline residue which is subjected to chromatography on silica gel. The 16a-methyl-6a,9a-difluoro-A -pregnadien-11/3,21-diol-3,20-dione is eluated with ethyl acetatereacted with valeric acid chloride to give the valerate ester. [Pg.489]

Comparative studies [1028,1052,1053] of the decompositions of Ni, Co and Cu alkanoates from formate to valerate showed that both the cation present and the length of the alkane chain influenced the temperature and enthalpy of decomposition. No such relationship was found [1048], however, between chain length and temperature of reaction of a series of nickel salts between the propionate and the stearate in a study which included some qualitative identifications of the products. Mass... [Pg.217]

If the homopolymer decomposes at the fabrication temperature another approach is to make a copolymer that can be melt processed at a lower temperature. For example, polyhydroxybutyrate decomposes at the processing temperature (190°C), whereas the copolymer with valeric acid can be processed at 160°C without decomposition. These aliphatic polyesters are biodegradable and most importantly, the decomposition products are not toxic, hence their use in medical applications (e.g., sutures). [Pg.90]

Biocytin is e-N-biotinyl-L-lysine, a derivative of D-biotin containing a lysine group coupled at its e-amino side chain to the valeric acid carboxylate. It is a naturally occurring complex of biotin that is typically found in serum and urine, and probably represents breakdown products of recycling biotinylated proteins. The enzyme biotinidase specifically cleaves the lysine residue and releases the biotin component from biocytin (Ebrahim and Dakshinamurti, 1986, 1987). [Pg.509]

Dexamethasone (147) was photolysed in chloroform-methanol to the lumipro-duct (152) [98], Irradiation of dexamethasone acetate (148) in methanol gave a mixture of (153), (157) and (163). The lumiproduct (152) was shown to be an intermediate for (158) and (164) [101]. Betamethasone (149) was photolysed under similar conditions to give the lumiproduct (154) [102]. Betamethasone-17-valerate has been shown to photodegrade in sunlight, although the products were not identified [103]. [Pg.80]

Hippuric acid is a normal product of metabolism. It is produced in the kidney by the enzymic union of benzoic acid and glycine (Schmiede-berg and Bunge, 1877). In birds benzoic acid is rendered innocuous by combination with ornithine (aS-diamino-valeric acid) to form the dibenzoyl-derivative, so-called ornithuric acid (Jaffe). [Pg.277]

Raffinate-II typically consists of40 % 1-butene, 40 % 2-butene and 20 % butane isomers. [RhH(CO)(TPPTS)3] does not catalyze the hydroformylation of internal olefins, neither their isomerization to terminal alkenes. It follows, that in addition to the 20 % butane in the feed, the 2-butene content will not react either. Following separation of the aqueous catalyts phase and the organic phase of aldehydes, the latter is freed from dissolved 2-butene and butane with a counter flow of synthesis gas. The crude aldehyde mixture is fractionated to yield n-valeraldehyde (95 %) and isovaleraldehyde (5 %) which are then oxidized to valeric add. Esters of n-valeric acid are used as lubricants. Unreacted butenes (mostly 2-butene) are hydroformylated and hydrogenated in a high pressure cobalt-catalyzed process to a mixture of isomeric amyl alcohols, while the remaining unreactive components (mostly butane) are used for power generation. Production of valeraldehydes was 12.000 t in 1995 [8] and was expected to increase later. [Pg.112]

After 15 days of degradation only low amounts of degradation products have evolved, the amount being lower than the detection limit of the GC system. After 17 weeks, however, 2-butanol, propionic acid, 1-pentanol, but3nic acid, valeric acid and caproic acid were detected in pH 6 water fraction. After another 20 weeks several alkanes could also be detected n-octane, n-nonane, n-decane, n-dodecane, n-tridecane and n-tetradecane (13). [Pg.62]

Kolbe noted also the formation of traces of methyl acetate and butyl valerate from electrolysis of acetate and valerate respectively. Careful analysis of reaction products by Petersen (1900) identified compounds which are today formulated as being derived from carbocations formed by loss of one electron from the alkyl radical [50]. Propanoic acid gives mostly ethene while butanoic acid and 2-methyl-propanoic acid give mostly propene. Acetate and long chain alkylcarboxylates give mostly the Kolbe type dimer hydrocarbon on electrolysis of their potassium salts in concentrated solution at a platinum electrode, using high current density and low temperatures [51]. [Pg.312]

Fluoro Analogues of Antitumour Natural Products Valmbidn (trifluoroacetyladriamycin valerate) (Valstar ), an ester of adriamycin trifluoroace-tylated on the aminoglycosidic fragment, is marketed for the treatment of resistant bladder cancer (Figure 8.7) (cf. Chapter 4). [Pg.284]

The above formula for leuoic acid is founded upon a reaction for the synthetical production of this acid from valeric aldehyde and hy cyanio acid. Yalerio add contains butyl consequently valeric aldehyde has the constitution expressed by the... [Pg.332]

Later investigators alcoholyzed imidate salts of other monobasic acids to obtain ortho esters of acetic [13, 14], propionic [15], butyric, valeric, caproic, isocaproic, benzoic [16], and phenylacetic acids [17]. For the latter alcoholysis reactions, the reaction time varies from a few days for the production of methyl orthopropionate to six weeks for ethyl orthobenzoate. McElvain reported that the reaction time is drastically cut by carrying out the reaction in boiling ether [18] or petroleum ether [19]. These conditions provide a reaction temperature below the decomposition point of the imidate salt to the amide. [Pg.30]

Hazards of Combustion Products. Data not available Behavior in Fire Melts and may decompose to give volatile acetic vapors pf valeric acid and other substances. Dust may form explosive mixture with air Ignition Temperature (deg. F) 788 Electrical Hazard. Not pertinent Burning Rate. Not pertinent. Chemical Reactivity Reactivity with Water No reaction Reactivity with Common Materials Data not available Stability During Transport Stable Neutralizing Agents for Acids and Caustics Rinse with dilute sodium bicarbonate or soda ash solution Polymerization Not pertinent Inhibitor of Polymerization Not pertinent. [Pg.284]

The advantages of this new process are the high n/i ratio and the low formation of heavy ends (1.5%) and alcohols (1%) without any formation of formates. In the original cobalt-based high-pressure process the n/i ratio was 67/33, with substantial formation of heavy ends (6.7%), alcohols (6.6%) and pentylformates (4.2%).350 The n-valeraldehyde product is oxidized with molecular oxygen to n-valeric acid, the trimethylolpropane, pentaerythritol, or dipentaerythritol esters of which are used as lubricants.350... [Pg.142]

DSM jointly with Du Pont de Nemours308 have patented platinum catalysts generated from the water soluble sulfonated ligand 30 (Table 2 m=0, n=0, m=l, n=2 m=l, n=l, Ar=nBu-S03Li) and used in the aqueous phase hydroformylation of internally unsaturated carboxylic acids, esters or nitriles to their corresponding formyl derivatives which are useful intermediates for the preparation of di-carboxylic acids (e.g. adipic acid). For example, TOFs up to 105 h-1 were achieved in the hydroformylation of 3-pentenoic acid catalysed by Pt/30 (m=0, n=0) at 100°C and 80 bar CO/H2 to give aldehydes with a selectivity of 83% (n/i=3.4), valeric acid (4.6%) and adipic acid (8.1%).308 The products were separated from the aqueous catalyst solution by extraction with ether. Five recycles of the aqueous catalyst solution showed that the Pt/30 (m=0, n=0) catalyst retains its activity. [Pg.152]

A further development of this successful technology was achieved to take advantage of the available feedstock base of butene isomers (raffinate II) for the preparation of n-C5 products (n-valeraldehyde, n-isoamyl alcohol, and n-valeric acid). In December 1995 production of n-valeraldehyde was started up in a new plant at Hoechst/Ruhrchemie (138). Generally, there are strong restrictions in the application of the two-phase catalytic processes to higher alkenes (Section IV.B.l), but the adaptation to butenes was possible with little modification of the process developed for propene. [Pg.498]


See other pages where Valeric production is mentioned: [Pg.45]    [Pg.45]    [Pg.355]    [Pg.105]    [Pg.18]    [Pg.578]    [Pg.720]    [Pg.125]    [Pg.195]    [Pg.355]    [Pg.953]    [Pg.196]    [Pg.58]    [Pg.69]    [Pg.104]    [Pg.157]    [Pg.161]    [Pg.206]    [Pg.173]    [Pg.230]    [Pg.4]    [Pg.930]    [Pg.312]    [Pg.217]    [Pg.276]    [Pg.545]    [Pg.51]    [Pg.545]    [Pg.64]   
See also in sourсe #XX -- [ Pg.75 ]




SEARCH



Production ethyl valerate

Valeral

Valerate

Valerates

Valeric

© 2024 chempedia.info