Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Claisen flasks

It has already been pointed out that a liquid even when subjected to simple atmospheric distillation may become superheated and then bump violently in consequence this danger is greatly increased during distillation under reduced pressure and therefore a specially designed flask, known as a Claisen flask, is used to decrease the risk of superheating. In Fig. i2(a) a Claisen flask D is shown, fitted up as part of one of the simplest types of vacuum-distillation apparatus. ... [Pg.28]

Dissolve 22-8 g. of ethyl crotonate in 40 ml. of dry carbon tetrachloride and add 35 6 g. of. V-bromosuccinimide. Heat the mixture under reflux for three hours. Cool to o and filter off the succinimide which is insoluble in cold carbon tetrachloride. Now shake the filtrate with water in a separating funnel, separate and dry the carbon tetrachloride layer with sodium sulphate. Filter through a fluted filter-paper into a Claisen flask and distil... [Pg.177]

Meanwhile fit up a Claisen flask (of about 175 ml. capacity) with a fine capillary and thermometer (see Fig. 12(A), p. 29), taking care that the range of temperature of 70°-100° is not obscured by the cork. Then filter the crude ester at the pump... [Pg.266]

Fit a 75-100 ml. Claisen flask with a small dropping-funnel in the main neck, and a water-condenser to the side-arm, and then run the... [Pg.290]

The pure quinaldine can now be isolated by either of the following methods, (a) Transfer the acetylated mixture to a Claisen flask (preferably having a short fractionating column below the side-arm) and distil the mixture slowly at water-pump pressure by heating the flask in an oil or silicone bath. The first fraction, of b.p. ca. 50715 mm., contains acetic acid and... [Pg.301]

Claisen flask or Claisen flask with fractionating side arm, see Figs. II, 13, (i and II, 13, 5, may be used, particularly if the residue is to be ultimately distilled under diminished pressure) should have a capacity of about twice the estimated volume of the residue after the removal of the solvent. The adapter may be omitted, if desired, and the end of the... [Pg.88]

Figs. II, 13, 5 and 11,13, 6 illustrate the use of a Claisen flask with fractionating side arm and an ordinary Claisen flask respectively. [Pg.89]

Solvents with boiling points below 90-95°. A steam bath or water bath should be employed. Alternatively, the apparatus of Fig. 77,13, 3, but with a Alter flask as receiver, may be used the end of the rubber tubing attached to the tubulure is either placed in the sink or allowed to hang over the bench. If a distillation is ultimately to be conducted in the flask from which the solvent is removed, the apparatus depicted in Fig. 77,13, 4 is recommended the distilling flask may be replaced by a Claisen flask or a Claisen flask with fractionating side arm, particularly if the subsequent distillation is to be conducted under diminished pressure. [Pg.90]

In order to carry out a distillation, the apparatus is completely assembled, the water pump turned on to its maximum capacity, and the screw clip on the capillary tube in the Claisen flask adjusted so that a gentle stream of air bubbles through the liquid (see Section 11,19 for details of the preparation of the capillary tube). The barometric pressure is read, and if the resulting vacuum deter mined from the reading on the mano meter is satisfactory (as estimated from the temperature of the tap water), the flask may be heated in an air (Fig. II,... [Pg.109]

Claisen flasks with fractionating side arms (see Figs. II, 24, 2-5) may be employed for comparatively small volumes of liquid. [Pg.120]

All the products of Clemmensen reductions contain small amounts of un-saturated hydrocarbons. These can be removed by repeated shaking with 10 per cent, of the volume of concentrated sulphuric acid until the acid is colourless or nearly so each shaking should be of about 5 minutes duration. The hydrocarbon is washed with water, 10 per cent, sodium carbonate solution, water (twice), dried with anhydreus magnesium or calcium sulphate, and finally distilled twice from a Claisen flask with fractionating side arm (or a Widmer flask) over sodium. [Pg.238]

It is preferable to use a 25 ml. Claisen flask with fractionating side arm. [Pg.244]

Alternatively, the following procedure for isolating the glycol may be used. Dilute the partly cooled mixture with 250 ml. of water, transfer to a distilling flask, and distil from an oil bath until the temperature reaches 95°. Transfer the hot residue to an apparatus for continuous extraction with ether (e.g.. Fig. II, 44, 2). The extraction is a slow process (36-48 hours) as the glycol is not very soluble in ether. (Benzene may also be employed as the extraction solvent.) Distil off the ether and, after removal of the water and alcohol, distil the glycol under reduced pressure from a Claisen flask. [Pg.251]

Reflux a mixture of 68 g. of anhydrous zinc chloride (e.g., sticks), 40 ml. (47 -5 g.) of concentrated hydrochloric acid and 18-5 g. (23 ml.) of sec.-butyl alcohol (b.p. 99-100°) in the apparatus of Fig. 777, 25, 1 for 2 hours. Distil oflF the crude chloride untU the temperature rises to 100°. Separate the upper layer of the distillate, wash it successively with water, 5 per cent, sodium hydroxide solution and water dry with anhydrous calcium chloride. Distil through a short column or from a Claisen flask with fractionating side arm, and collect the fraction of b.p. 67-70° some high boiling point material remains in the flask. Redistil and collect the pure cc. butyl chloride at 67-69°. The yield is 15 g. [Pg.273]

Place 179 g. (109-5 ml.) of redistilled thionyl chloride in the 250 ml. Claisen flask and 51 g. (62-6 ml.) of n-hcxyl alcohol, b.p. 156-158°, in the separatory funnel. Add the nr-hexyl alcohol during 2 hours there is a slight evolution of heat, sulphur dioxide is evolved (hence carry out the... [Pg.274]

In a 1500 ml. round-bottomed flask, carrying a reflux condenser, place 100 g. of pure cydohexanol, 250 ml. of concentrated hydrochloric acid and 80 g. of anhydrous calcium chloride heat the mixture on a boiling water bath for 10 hours with occasional shaking (1). Some hydrogen chloride is evolved, consequently the preparation should be conducted in the fume cupboard. Separate the upper layer from the cold reaction product, wash it successively with saturated salt solution, saturated sodium bicarbonate solution, saturated salt solution, and dry the crude cycZohexyl chloride with excess of anhydrous calcium chloride for at least 24 hours. Distil from a 150 ml. Claisen flask with fractionating side arm, and collect the pure product at 141-5-142-5°. The yield is 90 g. [Pg.275]

Allyl Bromide. Introduce into a 1-litre three-necked flask 250 g. (169 ml.) of 48 per cent, hydrobromic acid and then 75 g. (40-5 ml.) of concentrated sulphuric acid in portions, with shaking Anally add 58 g. (68 ml.) of pure allyl alcohol (Section 111,140). Fit the flask with a separatory funnel, a mechanical stirrer and an efficient condenser (preferably of the double surface type) set for downward distillation connect the flask to the condenser by a wide (6-8 mm.) bent tube. Place 75 g. (40 5 ml.) of concentrated sulphuric acid in the separatory funnel, set the stirrer in motion, and allow the acid to flow slowly into the warm solution. The allyl bromide will distil over (< 30 minutes). Wash the distillate with 5 per cent, sodium carbonate solution, followed by water, dry over anhydrous calcium chloride, and distil from a Claisen flask with a fractionating side arm or through a short column. The yield of allyl bromide, b.p. 69-72°, is 112 g. There is a small high-boiling fraction containing propylene dibromide. [Pg.280]

In a 500 ml. three-necked flask, equipped with a thermometer, a sealed Hershberg stirrer and a reflux condenser, place 32-5 g. of phosphoric oxide and add 115-5 g. (67-5 ml.) of 85 per cent, orthophosphoric acid (1). When the stirred mixture has cooled to room temperature, introduce 166 g. of potassium iodide and 22-5 g. of redistilled 1 4-butanediol (b.p. 228-230° or 133-135°/18 mm.). Heat the mixture with stirring at 100-120° for 4 hours. Cool the stirred mixture to room temperature and add 75 ml. of water and 125 ml. of ether. Separate the ethereal layer, decolourise it by shaking with 25 ml. of 10 per cent, sodium thiosulphate solution, wash with 100 ml. of cold, saturated sodium chloride solution, and dry with anhydrous magnesium sulphate. Remove the ether by flash distillation (Section 11,13 compare Fig. II, 13, 4) on a steam bath and distil the residue from a Claisen flask with fractionating side arm under diminished pressure. Collect the 1 4-diiodobutane at 110°/6 mm. the yield is 65 g. [Pg.284]


See other pages where Claisen flasks is mentioned: [Pg.31]    [Pg.32]    [Pg.32]    [Pg.199]    [Pg.223]    [Pg.267]    [Pg.274]    [Pg.288]    [Pg.309]    [Pg.312]    [Pg.47]    [Pg.47]    [Pg.87]    [Pg.104]    [Pg.105]    [Pg.105]    [Pg.106]    [Pg.107]    [Pg.117]    [Pg.117]    [Pg.118]    [Pg.188]    [Pg.236]    [Pg.238]    [Pg.252]    [Pg.257]    [Pg.259]    [Pg.259]    [Pg.274]    [Pg.275]    [Pg.276]    [Pg.289]   
See also in sourсe #XX -- [ Pg.47 , Pg.103 ]

See also in sourсe #XX -- [ Pg.10 ]

See also in sourсe #XX -- [ Pg.120 ]

See also in sourсe #XX -- [ Pg.47 , Pg.103 ]

See also in sourсe #XX -- [ Pg.20 , Pg.31 ]

See also in sourсe #XX -- [ Pg.7 ]

See also in sourсe #XX -- [ Pg.7 ]

See also in sourсe #XX -- [ Pg.47 , Pg.103 ]

See also in sourсe #XX -- [ Pg.10 ]

See also in sourсe #XX -- [ Pg.47 , Pg.103 ]

See also in sourсe #XX -- [ Pg.10 ]

See also in sourсe #XX -- [ Pg.10 ]




SEARCH



Apparatus Claisen flask, modified with column

Apparatus, adapter for steam distillations Claisen flask modified with column

Claisen flask with fractionating side arm

Flask, modified Claisen

Flasks

© 2024 chempedia.info