Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Acid mixtures

The most widely used reactions are those of electrophilic substitution, and under controlled conditions a maximum of three substituting groups, e.g. -NO2 (in the 1,3,5 positions) can be introduced by a nitric acid/sul-phuric acid mixture. Hot cone, sulphuric acid gives sulphonalion whilst halogens and a Lewis acid catalyst allow, e.g., chlorination or brom-ination. Other methods are required for introducing fluorine and iodine atoms. Benzene undergoes the Friedel-Crafts reaction. ... [Pg.55]

The Formaldehyde-Formic Acid Method, This method applies to primary and secondary amines, which when boiled with a formalin-formic acid mixture undergo complete methylation to the corresponding tertiary amine. This method has the advantage over the dimethyl sulphate method in that quaternary salts clearly cannot be formed. [Pg.218]

C3H4(0H)(C00H)3 aliphatic acids mixture turns yellow, no... [Pg.331]

Acetylation. Boil i g. of salicylic acid with 4 ml. of an acetic anhydride-acetic acid mixture (equal volumes) under reflux for 10 minutes. Pour into water. Filter off the aspirin (p. 111), wash with water and recrystallise from aqueous acetic acid (1 1) m.p. l36 ... [Pg.352]

Acetylation. Place 1 ml. of the substance (or, if solid, i g. of the powdered amine) in a small flask fitted with a reflux condenser (or in a test-tube fitted with a cold-finger, as in Fig. 35, p. 62), add 5 ml. of an acetic anhydride-acetic acid mixture (equal volumes) and reflux... [Pg.373]

SO, + 2H,0 + Br, — HjSO, + 2HBr Alternatively, the acid mixture may be obtained from the reaction between potassium bromide solution and concentrated sulphuric acid below 76° the potassium hydrogen sulphate crystallises out and is removed by filtration ... [Pg.271]

The dibrotnides of aliphatic glycols are best prepared by mixing the glycol with a cold hydrobromic acid - sulphuric acid mixture, allowing to stand for 24 hours, and heating on a steam bath for three hours ... [Pg.271]

This acid mixture may be prepared (compare Section 11,49, 1) by placing 120 g. (37-5 ml.) of bromine and 130 g. of crushed ice in a 500 ml. flask, cooling the latter in ice, and passing sulphur dioxide (from a siphon of the liquefied gas) into the bromine layer at such a rate that the gas is completely absorb. The flask is shaken occasionally, and the flow of gas is stopped inunediately the red colour due to free bromine has disappeared the mixture will then have a yellow colour. The resulting acid mixture is equivalent to 260 g. of 48 per cent, hydrobromio acid to which 75 g. of concentrated sulphuric acid have been added it need not be dis. tilled for the preparation of n-butyl bromide. [Pg.278]

The sulphuric acid and ethyl hydrogen sulphate required in reactions 1 and 3 respectively are regenerated in reactions 2 and 4, but the water formed is retted in the acid mixture and ultimately results in such a dilution that the caiversion into ether is no longer efficient. Furthermore, some ethylene is always formed this partly polymerises to give materials capable of reacting with sulphuric acid and reducing it to sulphur dioxide. In industrial practice, sulphuric acid is sufficient for the production of about 200 parts of ether. [Pg.309]

Oxidation of side chains. Aromatic nitro compounds that contain a side chain (e.g., nitro derivatives of alkyl benzenes) may be oxidised to the corresponding acids either by alkahne potassium permanganate (Section IV,9, 6) or, preferably, with a sodium dichromate - sulphuric acid mixture in which medium the nitro compound is more soluble. [Pg.529]

Add 25 g. of finely-powdered, dry acetanilide to 25 ml. of glacial acetic acid contained in a 500 ml. beaker introduce into the well-stirred mixture 92 g. (50 ml.) of concentrated sulphuric acid. The mixture becomes warm and a clear solution results. Surround the beaker with a freezing mixture of ice and salt, and stir the solution mechanically. Support a separatory funnel, containing a cold mixture of 15 -5 g. (11 ml.) of concentrated nitric acid and 12 -5 g. (7 ml.) of concentrated sulphuric acid, over the beaker. When the temperature of the solution falls to 0-2°, run in the acid mixture gradually while the temperature is maintained below 10°. After all the mixed acid has been added, remove the beaker from the freezing mixture, and allow it to stand at room temperature for 1 hour. Pour the reaction mixture on to 250 g. of crushed ice (or into 500 ml. of cold water), whereby the crude nitroacetanilide is at once precipitated. Allow to stand for 15 minutes, filter with suction on a Buchner funnel, wash it thoroughly with cold water until free from acids (test the wash water), and drain well. Recrystallise the pale yellow product from alcohol or methylated spirit (see Section IV,12 for experimental details), filter at the pump, wash with a httle cold alcohol, and dry in the air upon filter paper. [The yellow o-nitroacetanihde remains in the filtrate.] The yield of p-nitroacetanihde, a colourless crystalline sohd of m.p. 214°, is 20 g. [Pg.581]

During my Cleveland years, I also continued and extended my studies in nitration, which I started in the early 1950s in Hungary. Conventional nitration of aromatic compounds uses mixed acid (mixture of nitric acid and sulfuric acid). The water formed in the reaetion dilutes the acid, and spent aeid disposal is beeoming a serious environ-... [Pg.104]

Dry nitrocellulose, which bums rapidly and furiously, may detonate if present in large quantities or if confined. Nitrocellulose is a dangerous material to handle in the dry state because of sensitivity to friction, static electricity, impact, and heat. Nitrocellulose is always shipped wet with water or alcohol. The higher the nitrogen content the more sensitive it tends to be. Even nitrocellulose having 40% water detonates if confined and sufftcientiy activated. AH large-scale processes use nitric—sulfuric acid mixtures for nitration (127—132). [Pg.14]

Eluorspar assay may be completed by fluoride determination alone, because the mineralogical grouping rarely iacludes fluorine minerals other than fluorite. Calcium can be determined as oxalate or by ion-selective electrodes (67). SiUca can be determined ia the residue from solution ia perchloric acid—boric acid mixture by measuriag the loss ia weight on Aiming off with hydrofluoric acid. Another method for determining siUca ia fluorspar is the ASTM Standard Test Method E463-72. [Pg.175]

In appHcations as hard surface cleaners of stainless steel boilers and process equipment, glycoHc acid and formic acid mixtures are particularly advantageous because of effective removal of operational and preoperational deposits, absence of chlorides, low corrosion, freedom from organic Hon precipitations, economy, and volatile decomposition products. Ammoniated glycoHc acid Hi mixture with citric acid shows exceUent dissolution of the oxides and salts and the corrosion rates are low. [Pg.516]

Acid mixtures are used to oxidize and remove the dark materials. Proper control gives a series of bleached waxes. A white wax requires double refining and reduces the yield to about 30% of the cmde wax input. A series of synthetic waxes is prepared by separating the acids and alcohols produced during saponification of the wax and reesterifying them with acids or alcohols selected to give desired properties of hardness, solubiHty, emulsification, and gloss. [Pg.160]

Nickel sulfate also is made by the reaction of black nickel oxide and hot dilute sulfuric acid, or of dilute sulfuric acid and nickel carbonate. The reaction of nickel oxide and sulfuric acid has been studied and a reaction induction temperature of 49°C deterrnined (39). High purity nickel sulfate is made from the reaction of nickel carbonyl, sulfur dioxide, and oxygen in the gas phase at 100°C (40). Another method for the continuous manufacture of nickel sulfate is the gas-phase reaction of nickel carbonyl and nitric acid, recovering the soHd product in sulfuric acid, and continuously removing the soHd nickel sulfate from the acid mixture (41). In this last method, nickel carbonyl and sulfuric acid are fed into a closed-loop reactor. Nickel sulfate and carbon monoxide are produced the CO is thus recycled to form nickel carbonyl. [Pg.10]

Acid mixtures containing nitric acid and a strong acid, eg, sulfuric acid, perchloric acid, selenic acid, hydrofluoric acid, boron trifluoride, or an ion-exchange resin containing sulfonic acid groups, can be used as the nitrating feedstock for ionic nitrations. These strong acids are catalysts that result in the formation of nitronium ions, NO" 2- Sulfuric acid is almost always used industrially since it is both effective and relatively inexpensive. [Pg.32]

Figure 1 indicates how the NO concentrations vary at 20°C as a function of the molar composition of the acid mixture these results were determined using Raman spectra readings. [Pg.32]

Alkaline solutions of mononitroparaffins undergo many different reactions when stored for long periods, acidified, or heated. Acidification of solutions of mononitro salts is best effected slowly at 0°C or lower with weak acids or buffered acidic mixtures, such as acetic acid—urea, carbon dioxide, or hydroxyl ammonium chloride. If mineral acids are used under mild conditions, eg, dilute HCl at 0°C, decomposition yields a carbonyl compound and nitrous oxide (Nef reaction). [Pg.99]

The only clearly defined crystalline compositions are three forms of phosphoric acid and hemihydrate, pyrophosphoric acid, and crystalline P O q. The phosphoric acids obtained in highly concentrated solutions or by mixing phosphoric acid with phosphoms pentoxide are members of a continuous series of amorphous (excluding [Y OO]) condensed phosphoric acid mixtures. Mixtures having more than 86% P2O5 contain some cyclic metaphosphoric... [Pg.329]

These association reactions can be controlled. Acetone or acetonylacetone added to the solution of the polymeric electron acceptor prevents insolubilization, which takes place immediately upon the removal of the ketone. A second method of insolubiUzation control consists of blocking the carboxyl groups with inorganic cations, ie, the formation of the sodium or ammonium salt of poly(acryhc acid). Mixtures of poly(ethylene oxide) solutions with solutions of such salts can be precipitated by acidification. [Pg.342]

Methods have been developed for analysis or deterrnination of free amino acids in blood, food, and feedstocks (116). In proteins, the first step is hydrolysis, then separation if necessary, and finally, analysis of the amino acid mixture. [Pg.284]

The automated amino acid analy2er depends on ion-exchange chromatography (117) and is now a routine tool for the analysis of amino acid mixtures (118). This most advanced machine can detect as Htde as 10 pmol in ninhydrin reaction analysis. One-half to two hours are required for each analysis. An analysis chart is shown in Figure 2. [Pg.284]

Thin-Layer Chromatography (tic). Tic (126) is used widely for quahtative analysis and micro-quantity separation of amino acid mixtures. The amino acids detected are developed by ninhydrin coloring, except for proline and hydroxyproline. Isatia has been recommended for specific coloring of pToline (127). [Pg.285]

In Parenteral and Enteral Nutrition. Amino acid transfusion has been widely used since early times to maintain basic nitrogen metaboHsm when proteinaceous food caimot be eaten. It was very difficult to prepare a pyrogen-free transfusion from protein hydrolysates. Since the advances in L-amino acid production, the crystalline L-amino acids have been used and the problem of pyrogen in transfusion has been solved. The formulation of amino acid transfusion has been extensively investigated, and a solution or mixture in which the ratio between essential and nonessential amino acid is 1 1, has been widespread clinically. Special amino acid mixtures (eg, branched chain amino acids-enriched solution) have been developed for the treatment of several diseases (93). [Pg.296]

Oxidation. The synthesis of quinolinic acid and its subsequent decarboxylation to nicotinic acid [59-67-6] (7) has been accompHshed direcdy in 79% yield using a nitric—sulfuric acid mixture above 220°C (25). A wide variety of oxidants have been used in the preparation of quinoline N-oxide. This substrate has proved to be useful in the preparation of 2-chloroquinoline [612-62-4] and 4-chloroquinoline [611 -35-8] using sulfuryl chloride (26). The oxidized nitrogen is readily reduced with DMSO (27) (see Amine oxides). [Pg.390]


See other pages where Acid mixtures is mentioned: [Pg.179]    [Pg.352]    [Pg.380]    [Pg.73]    [Pg.224]    [Pg.226]    [Pg.53]    [Pg.53]    [Pg.525]    [Pg.1113]    [Pg.65]    [Pg.239]    [Pg.146]    [Pg.155]    [Pg.295]    [Pg.312]    [Pg.34]    [Pg.68]    [Pg.70]    [Pg.111]    [Pg.217]    [Pg.272]    [Pg.389]   
See also in sourсe #XX -- [ Pg.395 , Pg.396 , Pg.397 , Pg.398 , Pg.401 , Pg.403 ]




SEARCH



© 2024 chempedia.info