Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Surfactants sorbitan esters

Clearly, the exact HLB number depends on the nature of the oil. As mentioned in the section on surfactants, sorbitan esters, sorbitan glyceryl ester, silicone copolymers, sucrose esters, orthophosphoric esters, polyglycerol esters, polymeric surfactants, proteins and amine oxides may be used as emulsifiers. [Pg.34]

A series of sorbitol-based nonionic surfactants are used ia foods as water-ia-oil emulsifiers and defoamers. They are produced by reaction of fatty acids with sorbitol. During reaction, cycHc dehydration as well as esterification (primary hydroxyl group) occurs so that the hydrophilic portion is not only sorbitol but also its mono- and dianhydride. The product known as sorbitan monostearate [1338-41 -6] for example, is a mixture of partial stearic and palmitic acid esters (sorbitan monopalmitate [26266-57-9]) of sorbitol, 1,5-anhydro-D-glucitol [154-58-8] 1,4-sorbitan [27299-12-3] and isosorbide [652-67-5]. Sorbitan esters, such as the foregoing and also sorbitan monolaurate [1338-39-2] and sorbitan monooleate [1338-43-8], can be further modified by reaction with ethylene oxide to produce ethoxylated sorbitan esters, also nonionic detergents FDA approved for food use. [Pg.480]

The reaction product with monoethanolamine acts as a thickening agent [41,101] and with alcohols as an emollient [40]. Also reaction products with amino acids and oligo- or polypeptides for use in cosmetic formulations are known [43]. Sorbitan esters from ether carboxylates are described as emulsifiers or mild surfactants in cosmetic formulations [39] and alkyl ether carboxylic acid taurides as nonirritant anionic surfactants for cosmetic cleaners in particular [44]. Using unsaturated ether carboxylates it is possible to make viscous formulations based on combinations of unsaturated and saturated ether carboxylates [111]. Highly purified alkyl ether carboxylates based on alcohol ethoxylates with low free alcohol content have also been described [112]. [Pg.338]

Kakiuehi et al. [84] studied the adsorption properties of two types of nonionic surfactants, sorbitan fatty acid esters and sucrose alkanoate, at the water-nitrobenzene interface. These surfactants lower the interfacial capacity in the range of the applied potential with no sign of desorption. On the other hand, the remarkable adsorption-desorption capacity peak analogous to the adsorption peak seen for organic molecules at the mercury-electrolyte interface can be observed in the presence of ionic surfactants, such as triazine dye ligands for proteins [85]. [Pg.439]

Fatty alcohol- (or alkyl-)ethoxylates, CoE, are considered to be better candidates for LLE based on their ability to induce rapid phase separation for Winsor II and III systems. (Winsor III systems consist of excess aqueous and organic phases, and a middle phase containing bicontinuous microemulsions.) However, C,E,-type surfactants alone cannot extract biomolecules, presumably because they have no net negative charge, in contrast to sorbitan esters [24,26,30,31]. But, when combined with an additional anionic surfactant such as AOT or sodium benzene dodecyl sulfonate (SDBS), or affinity surfactant, extraction readily occurs [30,31]. The second surfactant must be present beyond a minimum threshold value so that its interfacial concentration is sufficiently large to be seen by... [Pg.482]

A multiwavelength approach might have been considered as an alternative to chemical derivatisation. Ruddle and Wilson [62] reported UV characterisation of PE extracts of three antioxidants (Topanol OC, Ionox 330 and Binox M), all with identical UV spectra and 7max = 277 nm, after reaction with nickel peroxide in alkaline ethanolic solutions, to induce marked differentiation in different solvents and allow positive identification. Nonionic surfactants of the type R0(CH2CH20) H were determined by UV spectrophotometry after derivatisation with tetrabromophenolphthalein ethyl ester potassium salt [34]. Magill and Becker [63] have described a rapid and sensitive spectrophotometric method to quantitate the peroxides present in the surfactants sorbitan monooleate and monostearate. The method, which relies on the peroxide conversion of iodide to iodine, works also for Polysorbate 60 and other surfactants and is more accurate than a titrimetric assay. [Pg.310]

Ethoxylated sorbitan ester surfactant mixtures like Tween 20 (cf. Fig. 2.9.38) were often used in biochemical applications. Detergents of this type were analysed by MALDI MS. The aim was to compare the separation results of TLC and RP-LC and to detect impurities within these ethoxylated sorbitan esters [30], Tween 20, the ethoxylated sorbitan carboxylate was ionised resulting in [M + Na]+ and [M + K]+ ions. The Tween 20 isomeric and homologue molecules contained a varying number of ethoxylate units. The number of EO units (-CH2CH2O-) was determined from 18 to 34 resulting in Am/z 44 equally spaced signals [30]. [Pg.301]

Other nonfood applications of D-sorbitol result from etherification and polycondensation reactions providing biodegradable polyetherpolyols used for soft pol5mrethane foams and melamine/formaldehyde or phenol resins. Sizable amounts of D-sorbitol also enter into the production of the sorbitan ester surfactants (cf. later in this chapter). [Pg.29]

The most common surfactants for analytical applications are nonionic (polyoxyethylene glycol monoethers, polyoxyethylene methyl- -alkyl ethers, t-octylphenoxy polyoxyethylene ethers, and polyoxyethylene sorbitan esters... [Pg.582]

Let us consider now the case of a specific ionic polysaccharide. The unique properties of complexes of the cationic chitosan with non-ionic sorbitan esters provides an interesting example. Grant and co-workers (2006) have established that mixtures of chitosan and surfactant form emulsion-like solutions and/or creams, where the surfactant component is present as droplets or micelle-like particles and the chitosan solution acts as the system s continuous phase. It was established that the length and the degree of saturation of the surfactant hydrocarbon chain have a significant impact on the development of the chitosan-surfactant complexes. Moreover, an optimal distance between the chitosan s protonated amine groups is required for effective interactions to occur between the polysaccharide and the sorbitan esters. [Pg.193]

According to Groot (2000), the mechanism of interaction between a polymer and surfactant may be deduced by considering parameters such as polymer size, mode of surfactant adsorption (continuous or discrete micelles), and possible sites of interaction (head group or tail). For the case of the mechanism of the interaction between chitosan and sorbitan esters, the polymer concentration (dilute, semi-dilute, concentrated) of... [Pg.193]

Grant, J., Cho, J., Allen, C. (2006). Self-assembly and physicochemical and rheological properties of a polysaccharide-surfactant system formed front the cationic biopolymer chitosan and nonionic sorbitan esters. Langmuir, 22,4327- 4335. [Pg.223]

In certain cases, cholesterol is required for vesicle formation. It is commonly accepted that the hydrophilic lipophilic balance (HLB) is a parameter that could indicate the vesicleforming potential of surfactants. For amphiphils such as sorbitan esters and alkyl ethers, low HLB values could predict vesicle formation [52,55]. However, niosomes were obtained from polysorbate 20 (HLB 16.7), a highly hydrophilic molecule, when cholesterol at an appropriate concentration was added to the amphiphil [44], In this case it could be assumed that a kind of amphiphilic complex with a lower HLB was responsible for the vesicle formation. An excellent review on the structure, characteristics, chemical composition, and mechanism of action of niosomes was published by Uchegbu and Vyas [41]. [Pg.260]

The most common nonionic surfactants are those based on ethylene oxide, referred to as ethoxylated surfactants. Several classes can be distinguished alcohol ethoxylates, alkyl phenol ethoxylates, fatty acid ethoxylates, sorbitan ester ethoxylates, fatty amine ethoxylates, and ethylene oxide-propylene oxide copolymers (sometimes referred to as polymer surfactants). Another important class of nonionics are the multihydroxy products such as glycol esters, glycerol (and polyglycerol) esters, glucosides (and polyglucosides), and sucrose esters. Amine oxides and sulfinyl surfactants represent nonionic with a small head group. [Pg.506]

The use of surfactants in the food industry has been known for centuries. Naturally occurring surfactants such as lecithin from egg yolk or soybean and various proteins from milk are used for the preparation of many food products, such as mayonnaise, salad creams, dressing, and desserts. Polar lipids such as monoglycerides have been introduced as emulsifiers for food products. More recently, synthetic surfactants such as sorbitan esters (Spans) and their ethoxylates (Tweens), sucrose esters, have been used in food emulsions. It should be mentioned that the structures of many food emulsions is complex, and in... [Pg.518]

Sorbitan esters of fatty acids Emulsifying agent, solubilizing agent, surfactant, stabilizer, suspending agent, vehicle iv... [Pg.1639]

Sorbitan esters are widely used in cosmetics, food products, and pharmaceutical formulations as lipophilic nonionic surfactants. They are mainly used in pharmaceutical formulations as emulsifying agents in the preparation of creams, emulsions, and ointments for topical application. When used alone, sorbitan esters produce stable water-in-oil emulsions and microemulsions but are frequently used in combination with varying... [Pg.714]

Typically, the polysorbate (Tween) surfactants have HLB values in the range 9.6-16.7 the sorbitan ester (Span) surfactants have HLBs in the lower range of 1.8-8.6. [Pg.239]

The sorbitan esters are insoluble in water, but are soluble in most organic solvents (low hydrophilic-lipophilic-balance (HLB) number surfactants). The ethoxylated products are generally soluble in number, and have relatively high HLB numbers. [Pg.21]

Surfactants used as detergents in dry cleaning must, of course, be soluble in the solvent used as the bath liquid. They are often added as solutions in some suitable solvent. Surfactants used for this purpose include solvent-soluble petroleum sulfonates, sodium and amine salts of alkylarylsulfonates, sodium sulfosucci-nates, POE phosphate esters, sorbitan esters, POE amides, and POE alkylphenols (Martin, 1965). [Pg.374]


See other pages where Surfactants sorbitan esters is mentioned: [Pg.54]    [Pg.463]    [Pg.358]    [Pg.482]    [Pg.25]    [Pg.31]    [Pg.54]    [Pg.206]    [Pg.194]    [Pg.260]    [Pg.314]    [Pg.87]    [Pg.230]    [Pg.64]    [Pg.446]    [Pg.773]    [Pg.502]    [Pg.346]    [Pg.995]    [Pg.3587]    [Pg.3605]    [Pg.741]    [Pg.1044]    [Pg.238]    [Pg.348]    [Pg.18]    [Pg.154]    [Pg.173]   
See also in sourсe #XX -- [ Pg.714 ]




SEARCH



Nonionic surfactants ethoxylated) sorbitan ester

Sorbitan

Sorbitan esters

Sorbitans

Surfactants esters

© 2024 chempedia.info