Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Surfactant number

The surfactant number or surfactant parameter [28, 29 and 30], N is defined as a dimensionless group ... [Pg.2587]

Figure 12.6 Surfactant numbers for a cone, a wedge, and a cylinder. Figure 12.6 Surfactant numbers for a cone, a wedge, and a cylinder.
The thermodynamic modeling of microemulsions has taken various lines and gave conflicting results in the period before the thermodynamic stability and microstructure were established. It was early realized that a maximal solubilization of oil and water simultaneously could be discussed in terms of a balance between hydrophilic and lipophilic interactions the surfactant (surfactant mixture) must be balanced. This can be expressed in terms of the HLB balance of Shinoda,Winsor s R value, and a critical packing parameter (or surfactant number), as introduced to microemulsions by Israelachvili et al. [37], Mitchell and Ninham [38], and others. The last has become very popular and useful for an understanding of surfactant aggregate structures in general. [Pg.8]

The ratio u//max which gives a geometric characterization of a surfactant molecule, is very useful when discussing the type of structure formed by a given amphiphile. This is called the critical packing parameter (CPP) or the surfactant number. [Pg.433]

Surfactant Number of days until available chlorine was less than 1% % Available chlorine after 180 days... [Pg.109]

The examples in the preceding section, of the flotation of lead and copper ores by xanthates, was one in which chemical forces predominated in the adsorption of the collector. Flotation processes have been applied to a number of other minerals that are either ionic in type, such as potassium chloride, or are insoluble oxides such as quartz and iron oxide, or ink pigments [needed to be removed in waste paper processing [92]]. In the case of quartz, surfactants such as alkyl amines are used, and the situation is complicated by micelle formation (see next section), which can also occur in the adsorbed layer [93, 94]. [Pg.478]

Fig. XIV-10. The correlation between the HLB number and the phase inversion temperature in cyclohexane of nonionic surfactants. (From Ref. 71.)... Fig. XIV-10. The correlation between the HLB number and the phase inversion temperature in cyclohexane of nonionic surfactants. (From Ref. 71.)...
A surfactant mixture having an HLB number of 8 should give a good W/O emulsion in which the oil phase is lanolin. Suggest two possible surfactant mixtures that you, an aspiring cosmetic chemist, might use you have been told that your formulations must contain 10% cetyl alcohol. [Pg.527]

A considerable number of experimental extensions have been developed in recent years. Luckliam et al [5] and Dan [ ] review examples of dynamic measurements in the SFA. Studying the visco-elastic response of surfactant films [ ] or adsorbed polymers [7, 9] promises to yield new insights into molecular mechanisms of frictional energy loss in boundary-lubricated systems [28, 70]. [Pg.1737]

Schemes for classifying surfactants are based upon physical properties or upon functionality. Charge is tire most prevalent physical property used in classifying surfactants. Surfactants are charged or uncharged, ionic or nonionic. Charged surfactants are furtlier classified as to whetlier tire amphipatliic portion is anionic, cationic or zwitterionic. Anotlier physical classification scheme is based upon overall size and molecular weight. Copolymeric nonionic surfactants may reach sizes corresponding to 10 000-20 000 Daltons. Physical state is anotlier important physical property, as surfactants may be obtained as crystalline solids, amoriDhous pastes or liquids under standard conditions. The number of tailgroups in a surfactant has recently become an important parameter. Many surfactants have eitlier one or two hydrocarbon tailgroups, and recent advances in surfactant science include even more complex assemblies [7, 8 and 9]. Schemes for classifying surfactants are based upon physical properties or upon functionality. Charge is tire most prevalent physical property used in classifying surfactants. Surfactants are charged or uncharged, ionic or nonionic. Charged surfactants are furtlier classified as to whetlier tire amphipatliic portion is anionic, cationic or zwitterionic. Anotlier physical classification scheme is based upon overall size and molecular weight. Copolymeric nonionic surfactants may reach sizes corresponding to 10 000-20 000 Daltons. Physical state is anotlier important physical property, as surfactants may be obtained as crystalline solids, amoriDhous pastes or liquids under standard conditions. The number of tailgroups in a surfactant has recently become an important parameter. Many surfactants have eitlier one or two hydrocarbon tailgroups, and recent advances in surfactant science include even more complex assemblies [7, 8 and 9].
Micellization is a second-order or continuous type phase transition. Therefore, one observes continuous changes over the course of micelle fonnation. Many experimental teclmiques are particularly well suited for examining properties of micelles and micellar solutions. Important micellar properties include micelle size and aggregation number, self-diffusion coefficient, molecular packing of surfactant in the micelle, extent of surfactant ionization and counterion binding affinity, micelle collision rates, and many others. [Pg.2581]

Other solubilization and partitioning phenomena are important, both within the context of microemulsions and in the absence of added immiscible solvent. In regular micellar solutions, micelles promote the solubility of many compounds otherwise insoluble in water. The amount of chemical component solubilized in a micellar solution will, typically, be much smaller than can be accommodated in microemulsion fonnation, such as when only a few molecules per micelle are solubilized. Such limited solubilization is nevertheless quite useful. The incoriDoration of minor quantities of pyrene and related optical probes into micelles are a key to the use of fluorescence depolarization in quantifying micellar aggregation numbers and micellar microviscosities [48]. Micellar solubilization makes it possible to measure acid-base or electrochemical properties of compounds otherwise insoluble in aqueous solution. Micellar solubilization facilitates micellar catalysis (see section C2.3.10) and emulsion polymerization (see section C2.3.12). On the other hand, there are untoward effects of micellar solubilization in practical applications of surfactants. Wlren one has a multiphase... [Pg.2592]

Herein [5.2]i is the total number of moles of 5.2 present in the reaction mixture, divided by the total reaction volume V is the observed pseudo-first-order rate constant Vmrji,s is an estimate of the molar volume of micellised surfactant S 1 and k , are the second-order rate constants in the aqueous phase and in the micellar pseudophase, respectively (see Figure 5.2) V is the volume of the aqueous phase and Psj is the partition coefficient of 5.2 over the micellar pseudophase and water, expressed as a ratio of concentrations. From the dependence of [5.2]j/lq,fe on the concentration of surfactant, Pj... [Pg.135]

It turned out that the dodecylsulfate surfactants Co(DS)i Ni(DS)2, Cu(DS)2 and Zn(DS)2 containing catalytically active counterions are extremely potent catalysts for the Diels-Alder reaction between 5.1 and 5.2 (see Scheme 5.1). The physical properties of these micelles have been described in the literature and a small number of catalytic studies have been reported. The influence of Cu(DS)2 micelles on the kinetics of quenching of a photoexcited species has been investigated. Interestingly, Kobayashi recently employed surfactants in scandium triflate catalysed aldol reactions". Robinson et al. have demonshuted that the interaction between metal ions and ligand at the surface of dodecylsulfate micelles can be extremely efficient. ... [Pg.139]

Studies on a large number of aromatic compounds have revealed that for CTAB the largest shift occurs for the alkyl chain protons near the surfactant headgroup, whereas in SDS nearly all proton signals are shifted significantly " ". For SDS, the most pronounced shifts are observed for protons around the centre of the chain. This result has been interpreted in terms of deeper penetration of... [Pg.145]

Emulsion Adhesives. The most widely used emulsion-based adhesive is that based upon poly(vinyl acetate)—poly(vinyl alcohol) copolymers formed by free-radical polymerization in an emulsion system. Poly(vinyl alcohol) is typically formed by hydrolysis of the poly(vinyl acetate). The properties of the emulsion are derived from the polymer employed in the polymerization as weU as from the system used to emulsify the polymer in water. The emulsion is stabilized by a combination of a surfactant plus a coUoid protection system. The protective coUoids are similar to those used paint (qv) to stabilize latex. For poly(vinyl acetate), the protective coUoids are isolated from natural gums and ceUulosic resins (carboxymethylceUulose or hydroxyethjdceUulose). The hydroHzed polymer may also be used. The physical properties of the poly(vinyl acetate) polymer can be modified by changing the co-monomer used in the polymerization. Any material which is free-radically active and participates in an emulsion polymerization can be employed. Plasticizers (qv), tackifiers, viscosity modifiers, solvents (added to coalesce the emulsion particles), fillers, humectants, and other materials are often added to the adhesive to meet specifications for the intended appHcation. Because the presence of foam in the bond line could decrease performance of the adhesion joint, agents that control the amount of air entrapped in an adhesive bond must be added. Biocides are also necessary many of the materials that are used to stabilize poly(vinyl acetate) emulsions are natural products. Poly(vinyl acetate) adhesives known as "white glue" or "carpenter s glue" are available under a number of different trade names. AppHcations are found mosdy in the area of adhesion to paper and wood (see Vinyl polymers). [Pg.235]


See other pages where Surfactant number is mentioned: [Pg.419]    [Pg.271]    [Pg.171]    [Pg.11]    [Pg.150]    [Pg.223]    [Pg.31]    [Pg.422]    [Pg.29]    [Pg.150]    [Pg.419]    [Pg.271]    [Pg.171]    [Pg.11]    [Pg.150]    [Pg.223]    [Pg.31]    [Pg.422]    [Pg.29]    [Pg.150]    [Pg.250]    [Pg.147]    [Pg.488]    [Pg.513]    [Pg.514]    [Pg.514]    [Pg.2360]    [Pg.2575]    [Pg.2579]    [Pg.2582]    [Pg.2591]    [Pg.2592]    [Pg.126]    [Pg.126]    [Pg.131]    [Pg.134]    [Pg.400]    [Pg.401]    [Pg.147]    [Pg.442]   
See also in sourсe #XX -- [ Pg.256 ]




SEARCH



© 2024 chempedia.info