Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Solvent extraction, defined

Dual solvent fractional extraction (Fig. 7b) makes use of the selectivity of two solvents (A and B) with respect to consolute components C and D, as defined in equation 7. The two solvents enter the extractor at opposite ends of the cascade and the two consolute components enter at some point within the cascade. Solvent recovery is usually an important feature of dual solvent fractional extraction and provision may also be made for reflux of part of the product streams containing C or D. Simplified graphical and analytical procedures for calculation of stages for dual solvent extraction are available (5) for the cases where is constant and the two solvents A and B are not significantly miscible. In general, the accurate calculation of stages is time-consuming (28) but a computer technique has been developed (56). [Pg.67]

Natural Products. Various methods have been and continue to be employed to obtain useful materials from various parts of plants. Essences from plants are obtained by distillation (often with steam), direct expression (pressing), collection of exudates, enfleurage (extraction with fats or oils), and solvent extraction. Solvents used include typical chemical solvents such as alcohols and hydrocarbons. Liquid (supercritical) carbon dioxide has come into commercial use in the 1990s as an extractant to produce perfume materials. The principal forms of natural perfume ingredients are defined as follows the methods used to prepare them are described in somewhat general terms because they vary for each product and suppHer. This is a part of the industry that is governed as much by art as by science. [Pg.76]

Nuclear Waste. NRC defines high level radioactive waste to include (/) irradiated (spent) reactor fuel (2) Hquid waste resulting from the operation of the first cycle solvent extraction system, and the concentrated wastes from subsequent extraction cycles, in a faciHty for reprocessing irradiated reactor fuel and (3) soHds into which such Hquid wastes have been converted. Approximately 23,000 metric tons of spent nuclear fuel has been stored at commercial nuclear reactors as of 1991. This amount is expected to double by the year 2001. [Pg.92]

Extraction and Extractive Distillation. The choice of an extraction or extractive distillation solvent depends upon its boiling point, polarity, thermal stabiUty, selectivity, aromatics capacity, and upon the feed aromatic content (see Extraction). Capacity, defined as the quantity of material that is extracted from the feed by a given quantity of solvent, must be balanced against selectivity, defined as the degree to which the solvent extracts the aromatics in the feed in preference to paraffins and other materials. Most high capacity solvents have low selectivity. The ultimate choice of solvent is deterrnined by economics. The most important extraction processes use either sulfolane or glycols as the polar extraction solvent. [Pg.311]

Codex has also defined the various types of cocoa butter ia commercial trade (10). Press cocoa butter is defined as fat obtained by pressure from cocoa nib or chocolate Hquor. In the United States, this is often referred to as prime pure cocoa butter. ExpeUer cocoa butter is defined as the fat prepared by the expeUer process. In this process, cocoa butter is obtained direcdy from whole beans by pressing ia a cage press. ExpeUer butter usuaUy has a stronger flavor and darker color than prime cocoa butter and is filtered with carbon or otherwise treated prior to use. Solvent extracted cocoa butter is cocoa butter obtained from beans, nibs, Hquor, cake, or fines by solvent extraction (qv), usuaUy with hexane. Refined cocoa butter is any of the above cocoa butters that has been treated to remove impurities or undesirable odors and flavors. [Pg.93]

With the batch data. Slater and Godfrey in Lo, Baird, and Hanson, Handbook of Solvent Extraction, Wiley, New York, 1983, recommend that an approach to equilibrium be used to provide the fundamental basis for scale-up they define the approach to equilibrium (Ef) as ... [Pg.1468]

In the preceding solvent extraction models, it was assumed that the phase flow rates L and G remained constant, which is consistent with a low degree of solute transfer relative to the total phase flow rate. For the case of gas absorption, normally the liquid flow is fairly constant and Lq is approximately equal to Li but often the gas flow can change quite substantially, such that Gq no longer equals Gj. For highly concentrated gas phase systems, it is therefore often preferable to define flow rates, L and G, on a solute-free mass basis and to express concentrations X and Y as mass ratio concentrations. This system of concentration units is used in the simulation example AMMONAB. [Pg.199]

A growing-drop method has been reported [53] for measuring interfacial liquid-liquid reactions, in which mass transport to the growing drop was considered to be well-defined and calculable. This approach was applied to study the kinetics of the solvent extraction of cupric ions by complexing ligands. [Pg.343]

One of the most attractive roles of liquid liquid interfaces that we found in solvent extraction kinetics of metal ions is a catalytic effect. Shaking or stirring of the solvent extraction system generates a wide interfacial area or a large specific interfacial area defined as the interfacial area divided by a bulk phase volume. Metal extractants have a molecular structure which has both hydrophilic and hydrophobic groups. Therefore, they have a property of interfacial adsorptivity much like surfactant molecules. Adsorption of extractant at the liquid liquid interface can dramatically facilitate the interfacial com-plexation which has been exploited from our research. [Pg.361]

Solvent extraction is defined as the process of separating one constituent from a mixture by dissolving it into a solvent in which it is soluble but in which the other constituents of the mixture are not, or are at least less soluble. The three main reasons for using solvent extraction are (i) to isolate a component or analyte of interest (ii) to remove potential interferents from a matrix and (iii) to preconcentrate an analyte prior to measurement. [Pg.60]

Essentially, extraction of an analyte from one phase into a second phase is dependent upon two main factors solubility and equilibrium. The principle by which solvent extraction is successful is that like dissolves like . To identify which solvent performs best in which system, a number of chemical properties must be considered to determine the efficiency and success of an extraction [77]. Separation of a solute from solid, liquid or gaseous sample by using a suitable solvent is reliant upon the relationship described by Nemst s distribution or partition law. The traditional distribution or partition coefficient is defined as Kn = Cs/C, where Cs is the concentration of the solute in the solid and Ci is the species concentration in the liquid. A small Kd value stands for a more powerful solvent which is more likely to accumulate the target analyte. The shape of the partition isotherm can be used to deduce the behaviour of the solute in the extracting solvent. In theory, partitioning of the analyte between polymer and solvent prevents complete extraction. However, as the quantity of extracting solvent is much larger than that of the polymeric material, and the partition coefficients usually favour the solvent, in practice at equilibrium very low levels in the polymer will result. [Pg.61]

Solvent Composition and Recovery. The solvent was defined as the product fraction which is soluble in the hot filtrate and the THF extraction of the filter cake and which boiled between 232 C and 482 C at atmospheric pressure. One of the requirements of a commercial coal liquefaction process is that a least as much solvent be created as is used in the process. In addition, the composition of the solvent must be kept constant if it is to be... [Pg.175]

Nucleic acids, DNA and RNA, are attractive biopolymers that can be used for biomedical applications [175,176], nanostructure fabrication [177,178], computing [179,180], and materials for electron-conduction [181,182]. Immobilization of DNA and RNA in well-defined nanostructures would be one of the most unique subjects in current nanotechnology. Unfortunately, a silica surface cannot usually adsorb duplex DNA in aqueous solution due to the electrostatic repulsion between the silica surface and polyanionic DNA. However, Fujiwara et al. recently found that duplex DNA in protonated phosphoric acid form can adsorb on mesoporous silicates, even in low-salt aqueous solution [183]. The DNA adsorption behavior depended much on the pore size of the mesoporous silica. Plausible models of DNA accommodation in mesopore silica channels are depicted in Figure 4.20. Inclusion of duplex DNA in mesoporous silicates with larger pores, around 3.8 nm diameter, would be accompanied by the formation of four water monolayers on the silica surface of the mesoporous inner channel (Figure 4.20A), where sufficient quantities of Si—OH groups remained after solvent extraction of the template (not by calcination). [Pg.134]

A somewhat different liquid/liquid system is found in the solvent extraction of copper. We have studied the system using heptane/water. These solvents are so immiscible that, as shown in Fig. 15, there is probably no extensive interphase region but a more sharply defined interface. We have shown that for the oxime ligand, Acorga P50 [4], written as HL, the mechanism of the reaction is as in Scheme 2 (Albery et al., 1984 Albery and Choudhery, 1988). [Pg.156]

The simplest approach to the collection and subdivision of organic materials in seawater is to use some physical or chemical means of removing one fraction from solution or suspension. The techniques vary, from simple filtration to collect particulate matter, to chemical methods, such as solvent extraction and coprecipitation. With each of these methods, the analyst must know the efficiency of collection and exactly which fraction is being collected. Very often the fraction is defined by the method of collection two methods... [Pg.363]

Define recrystallization, distillation, fractional distillation, extraction, liquid-liquid extraction, solvent extraction, countercurrent distribution, liquid-solid extraction, and chromatography. [Pg.331]

The primary parameter in solvent extraction is the measured distribution ratio, where it is up to the writer to define what is being measured, indicating this by an appropriate index. In the Nernst distribution experiment described earlier, the analytically measured concentration of benzoic acid is in the aqueous phase [Bz]aq,tot = [HBz]aq + [Bz ]aq, and in the organic phase [Bz] , tot= [HBzJorg + [HjBzjlo . Thus the measured distribution ratio, abbreviated Z)bz, becomes... [Pg.19]

The quantity Pb is independent of the concentration scale used, being a true property of the solntion, bnt the three standard chemical potentials Pb x), PbV) Pb°°(c) are not eqnal. Conseqnently, differences between the standard chemical potentials of a solnte in the two liqnid phases employed in solvent extraction also depend on the concentration scale nsed. Thus, Pb defined in Eq. (2.23) is specific for the rational concentration scale, and does not equal corresponding quantities pertaining to the other scales. Therefore, Eq. (2.30) might be rewritten with a subscript (x), to designate the rational scale, [i.e., with Z)b(x) and Pb(x)]- Similar expressions would then be... [Pg.63]

Unfortunately, little direct information is available on the physicochemical properties of the interface, since real interfacial properties (dielectric constant, viscosity, density, charge distribution) are difficult to measure, and the interpretation of the limited results so far available on systems relevant to solvent extraction are open to discussion. Interfacial tension measurements are, in this respect, an exception and can be easily performed by several standard physicochemical techniques. Specialized treatises on surface chemistry provide an exhaustive description of the interfacial phenomena [10,11]. The interfacial tension, y, is defined as that force per unit length that is required to increase the contact surface of two immiscible liquids by 1 cm. Its units, in the CGS system, are dyne per centimeter (dyne cm" ). Adsorption of extractant molecules at the interface lowers the interfacial tension and makes it easier to disperse one phase into the other. [Pg.224]

The nomenclature used in solvent extraction has been defined in Chapter 1 and is illustrated in Fig. 8.1. Not all of the steps shown in this figure will be found in every extraction process, but equally there may be occasions where it is necessary to add additional steps for example, to recover the extractant from the scrub raffinate. So while Fig. 8.1 is not a completely general flow diagram it covers most of the processes likely to be found in practice. Variations of this flow sheet will become apparent during the remaining chapters. [Pg.343]

The separation of organic mixtures into groups of components of similar chemical type was one of the earliest applications of solvent extraction. In this chapter the term solvent is used to define the extractant phase that may contain either an extractant in a diluent or an organic compound that can itself act as an extractant. Using this technique, a solvent that preferentially dissolves aromatic compounds can be used to remove aromatics from kerosene to produce a better quality fuel. In the same way, solvent extraction can be used to produce high-purity aromatic extracts from catalytic reformates, aromatics that are essentially raw materials in the production of products such as polystyrene, nylon, and Terylene. These features have made solvent extraction a standard technique in the oil-refining and petrochemical industries. The extraction of organic compounds, however, is not confined to these industries. Other examples in this chapter include the production of pharmaceuticals and environmental processes. [Pg.418]

NN applications, perhaps more important, is process control. Processes that are poorly understood or ill defined can hardly be simulated by empirical methods. The problem of particular importance for this review is the use of NN in chemical engineering to model nonlinear steady-state solvent extraction processes in extraction columns [112] or in batteries of counter-current mixer-settlers [113]. It has been shown on the example of zirconium/ hafnium separation that the knowledge acquired by the network in the learning process may be used for accurate prediction of the response of dependent process variables to a change of the independent variables in the extraction plant. If implemented in the real process, the NN would alert the operator to deviations from the nominal values and would predict the expected value if no corrective action was taken. As a processing time of a trained NN is short, less than a second, the NN can be used as a real-time sensor [113]. [Pg.706]

Solvent extraction Database (SXD) software has been developed by A. Varnek et al.51 Each record of SXD corresponds to one extraction equilibrium and contains 90 fields to store bibliographic information, system descriptions, chemical structures of extractants, and thermodynamic and kinetic data in textual, numerical, and graphical forms. A search can be performed by any field including 2D structure. SXD tools allow the user to compare plots from different records and to select a subset of data according to user-defined constraints (identical metal, content of aqueous or organic phases, etc.). This database, containing about 3,500 records, is available on the INTERNET (http //infochim.u-strasbg.fr/sxd). [Pg.329]

A solvent-extraction flowsheet is broken down into sections such as extraction, scrub, and strip. For each section, one or more component in a process fluid must be moved from one phase to the other phase with a specified degree of completeness. The first design problem is to determine the number of stages for each section to accomplish the required component transfer. With the well-defined stages of the centrifugal contactor, the following extraction factor (E) can be used to estimate the number of stages required ... [Pg.589]


See other pages where Solvent extraction, defined is mentioned: [Pg.180]    [Pg.323]    [Pg.19]    [Pg.61]    [Pg.147]    [Pg.516]    [Pg.112]    [Pg.12]    [Pg.204]    [Pg.229]    [Pg.441]    [Pg.560]    [Pg.611]    [Pg.717]    [Pg.207]    [Pg.157]    [Pg.2]    [Pg.494]    [Pg.835]    [Pg.900]    [Pg.928]    [Pg.242]    [Pg.565]   
See also in sourсe #XX -- [ Pg.99 ]




SEARCH



Solvents defined

© 2024 chempedia.info