Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Serum lipid peroxidation

Han, K. H., Shimada, K. L, Sekikawa, M., Fukushima, M. (2007b). Anthocyanin-rich red potato flakes affect serum lipid peroxidation and hepatic SOD mRNA level in rats. Biosci. Biotechnol. Biochem., 71, 1356-1359. [Pg.158]

Yagi K (1982) Assay for serum lipid peroxide level and its clinical significance. In Yagi KJ (ed) Lipid peroxide in biology and medicine. Academic, New York, pp 223-242... [Pg.275]

Suppressed formation of lipid peroxides in homogenate of regenerating rat liver, but did not affect serum lipid peroxide concentration or serum lipid concentration, except for phospholipids 624... [Pg.200]

The effect of PJ consumption by patients with CAS on their serum oxidative state was measured also as serum concentration of antibodies against Ox-LDL.31 A significant (p < 0.01) reduction in the concentration of antibodies against Ox-LDL by 24 and 19% was observed after 1 and 3 months of PJ consumption, respectively (from 2070 61 EU/mL before treatment to 1563 69 and 1670 52 F.lI/mL after 1 and 3 months of PJ consumption, respectively). Total antioxidant status (TAS) in serum from these patients was substantially increased by 2.3-fold (from 0.95 0.12 nmol/L at baseline up to 2.20 0.25 nmol/L after 12 months of PJ consumption). These results indicate that PJ administration to patients with CAS substantially reduced their serum oxidative status and could thus inhibit plasma lipid peroxidation. The susceptibility of the patient s plasma to free radical-induced oxidation decreased after 12 months of PJ consumption by 62% (from 209 18 at baseline to 79 6 nmol of peroxides/milliliter). The effect of PJ consumption on serum oxidative state was recently measured also in patients with non-insulin-dependent diabetes mellitus (NIDDM). Consumption of 50 mL of PJ per day for a period of 3 months resulted in a significant reduction in serum lipid peroxides and thiobarbituric acid reactive substance (TBAR) levels by 56 and 28%, respectively.32... [Pg.142]

Curcumin and turmeric protect the liver against several toxicants both in vitro and in vivo. Reddy and Lokesh (1992) found that oral administration of curcumin (30mg/kg body weight) for 10 days lowered the liver and serum lipid peroxide levels, serum alanine aminotransferase (ALAT), aspartate aminotransferase (ASAT) and lactate dehydrogenase (LDH), enhanced by i.p. injection of iron in rats. [Pg.114]

There is a growing interest in F-induced oxidative stress. Studies have indicated that F exposure resulted in lipid peroxidation. In animal experiments, F was shown capable of inducing not only lipid peroxidation in several organs and tissues but also changes in endogenous antioxidant components such as SOD, GPx, and GSH (Sun et al. 1994). Studies of aluminum plant workers exposed to F in the workplace showed that, in addition to marked increases in urinary F concentrations, the levels of serum lipid peroxides and the activity of SOD were increased, compared with those of workers not exposed to F. These results suggest the occurrence of free radical-induced lipid peroxidation in industrial workers chronically exposed to high levels of F. [Pg.215]

Yamaguchi Y, Kagota S, Nakamura K, Shinozuka K, Kunitomo M. Inhibitory effects of water extracts from fruiting bodies of cultured Cordyceps sinensis on raised serum lipid peroxide levels and aortic cholesterol deposition in atherosclerotic mice. Phytother Res 14(8) 650-652, 2000b. [Pg.401]

Soni et al. examined the effect of curcumin on seram levels of cholesterol and hpid peroxides in 10 healthy human volunteers. A dose of 500mg of curcumin per day for 7 days significantly decreased the level of serum lipid peroxides (33%), increased HDL cholesterol (29%), and decreased total serum cholesterol (11.63%). The results suggest curcumin as a chemopreventive substance against arterial diseases. [Pg.452]

Benzo[a]pyrene-3,6-quinol and other quinols are involved in toxic quinone/quinol redox cycles (Lo-RENTZEN and Ts o 1977, Loeentzen etal. 1979). Quinols are formed from the corresponding qui-nones by several reductases. They are rapidly auto-xidizes while superoxide anions are formed. Benzo[fl]pyrene-3,6-quinone has been shown to be mutagenic in the Ames test, using tester strain TA 104 (Chesis et al. 1984) or TA 102, strains which are particularly sensitive to reactive oxygen species. In male Sprague-Dawley rats, a rapid increase of unmetabolised benzo[fl]pyrene was observed in sera 3h after benzo [a] pyrene treatment followed by a sharp decrease (Kim et al. 2000). The time-dependent pattern of serum lipid peroxidation and the level of erythrocyte antioxidant enzymes were shown to be related to the concentrations of the formation of benzo[ ]pyrene-quinones, oxidatively altered lipids and antioxidant enzymes in the blood. [Pg.10]

Daily administration of curcuminoids (0.5 g) to healthy human volunteers produced a 33% reduction in blood lipid peroxide levels (Soni and Kuttan 1992). This was accompanied by an increase in HDL cholesterol and a decrease in total serum cholesterol as a result of curcumin administration (500 mg/day for 7 days) (Quiles etal. 2002). The reduction in serum lipid peroxides and cholesterol suggests the potential of curcumin against arterial diseases. Supplementation with turmeric extract reduced oxidative stress and attenuated the development of atherosclerotic fatty streaks in rabbits fed on a high-cholesterol diet (Quiles etal. 2002). [Pg.399]

VANHARANTA M, VOUTILAINEN S, NURMI T, KAIKKONEN J, ROBERTS L J, MORROW J D, ADLERCREUTZ H, SALONEN J T (2002b) Association between low serum enterolactone and increased plasma F2-isoprostanes, a measure of lipid peroxidation, Atherosclerosis, 160,465-9. [Pg.297]

The importance of vitamin E for maintenance of lipid integrity in vivo is emphasized by the fact that it is the only major lipid-soluble chain-breaking antioxidant found within plasma, red cells and tissue cells. Esterbauer etal. (1991) have shown that the oxidation resistance of LDL increases proportionately with a-tocopherol concentration. In patients with RA, synovial fluid concentrations of a-tocopherol are significantly lower relative to paired serum samples (Fairburn et al., 1992). The low level of vitamin E within the inflamed joint implies it is being consumed via its role in terminating lipid peroxidation and this will be discussed further in Section 3.3. [Pg.101]

Esterbauer et al. (1991) have demonstrated that /3-carotene becomes an effective antioxidant after the depletion of vitamin E. Our studies of LDL isolated from matched rheumatoid serum and synovial fluid demonstrate a depletion of /8-carotene (Section 2.2.2.2). Oncley et al. (1952) stated that the progressive changes in the absorption spectra of LDL were correlated with the autooxidation of constituent fatty acids, the auto-oxidation being the most likely cause of carotenoid degradation. The observation that /3-carotene levels in synovial fluid LDL are lower than those of matched plasma LDL (Section 2.2.2) is interesting in that /3-carotene functions as the most effective antioxidant under conditions of low fOi (Burton and Traber, 1990). As discussed above (Section 2.1.3), the rheumatoid joint is both hypoxic and acidotic. We have also found that the concentration of vitamin E is markedly diminished in synovial fluid from inflamed joints when compared to matched plasma samples (Fairburn etal., 1992). This difference could not be accounted for by the lower concentrations of lipids and lipoproteins within synovial fluid. The low levels of both vitamin E and /3-carotene in rheumatoid synovial fluid are consistent with the consumption of lipid-soluble antioxidants within the arthritic joint due to their role in terminating the process of lipid peroxidation (Fairburn et al., 1992). [Pg.106]

Copper salts such as CuS04 are potent catalysts of the oxidative modification of LDL in vitro (Esterbauer et al., 1990), although more than 95% of the copper in human serum is bound to caeruloplasmin. Cp is an acute-phase protein and a potent inhibitor of lipid peroxidation, but is susceptible to both proteolytic and oxidative attack with the consequent release of catalytic copper ions capable of inducing lipid peroxidation (Winyard and... [Pg.106]

Guyan et al. 1990) have used several markers of lipid peroxidation (9-cis-, 11-tmns-isomer of linoleic acid, conjugated dienes and ultraviolet fluorescent products) to demonstrate significant increases in the duodenal aspirate after secretin stimulation in patients with acute and clinic pancreatitis. They interpreted this as indicating induction of hepatic and pancreatic drug-metabolizing enzymes in the face of a shortfidl of antioxidant defences, more marked in chronic pancreatitis. Subsequent studies in patients with chronic pancreatitis have confirmed decreased serum concentrations of selenium, -carotene and vitamin E compared with healthy controls (Uden et al., 1992). Basso aol. (1990) have measured increases in lipid peroxides in the sera of patients with chronic... [Pg.152]

In the bile-duct-ligated rat, hepatic mitochondrial lipid peroxides are increased and correlate with serum levels of alkaline phosphatase, bilirubin and alanine aminotransferase (Sokol et al., 1991). Dietary vitamin E deficiency resulted in relatively higher lipid peroxide and bilirubin... [Pg.156]

Table 12.1 Studies of serum/plasma lipid peroxides in human diabetes modified from Lyons (1991)... Table 12.1 Studies of serum/plasma lipid peroxides in human diabetes modified from Lyons (1991)...
Nishigaki, 1., Hagjhara, M., Tsunekawa, H., Maseki, M. and Yagi, K. (1981). Lipid peroxide levels of serum lipoprotein fractions of diabetic patients. Biochem. Med. 25, 373-378. [Pg.197]

Hepatic reperfusion injury is not a phenomenon connected solely to liver transplantation but also to situations of prolonged hypoperfusion of the host s own liver. Examples of this occurrence are hypovolemic shock and acute cardiovascular injur) (heart attack). As a result of such cessation and then reintroduction of blood flow, the liver is damaged such that centrilobular necrosis occurs and elevated levels of liver enzymes in the serum can be detected. Particularly because of the involvement of other organs, the interpretation of the role of free radicals in ischaemic hepatitis from this clinical data is very difficult. The involvement of free radicals in the overall phenomenon of hypovolemic shock has been discussed recently by Redl et al. (1993). More specifically. Poll (1993) has reported preliminary data on markers of free-radical production during ischaemic hepatitis. These markers mostly concerned indices of lipid peroxidation in the serum and also in the erythrocytes of affected subjects, and a correlation was seen with the extent of liver injury. The mechanisms of free-radical damage in this model will be difficult to determine in the clinical setting, but the similarity to the situation with transplanted liver surest that the above discussion of the role of XO activation, Kupffer cell activation and induction of an acute inflammatory response would be also relevant here. It will be important to establish whether oxidative stress is important in the pathogenesis of ischaemic hepatitis and in the problems of liver transplantation discussed above, since it would surest that antioxidant therapy could be of real benefit. [Pg.243]

As in the case of other cardiovascular diseases, the possibility of antioxidant treatment of diabetes mellitus has been studied in both animal models and diabetic patients. The treatment of streptozotocin-induced diabetic rats with a-lipoic acid reduced superoxide production by aorta and superoxide and peroxynitrite formation by arterioles providing circulation to the region of the sciatic nerve, suppressed lipid peroxidation in serum, and improved lens glutathione level [131]. In contrast, hydroxyethyl starch desferrioxamine had no effect on the markers of oxidative stress in diabetic rats. Lipoic acid also suppressed hyperglycemia and mitochondrial superoxide generation in hearts of glucose-treated rats [132],... [Pg.925]

Overproduction of free radicals by erythrocytes and leukocytes and iron overload result in a sharp increase in free radical damage in T1 patients. Thus, Livrea et al. [385] found a twofold increase in the levels of conjugated dienes, MDA, and protein carbonyls with respect to control in serum from 42 (3-thalassemic patients. Simultaneously, there was a decrease in the content of antioxidant vitamins C (44%) and E (42%). It was suggested that the iron-induced liver damage in thalassemia may play a major role in the depletion of antioxidant vitamins. Plasma thiobarbituric acid-reactive substances (TBARS) and conjugated dienes were elevated in (3-thalassemic children compared to controls together with compensatory increase in SOD activity [386]. The development of lipid peroxidation in thalassemic erythrocytes probably depends on a decrease in reduced glutathione level and decreased catalase activity [387]. [Pg.941]

Adults require 1-2 mg of copper per day, and eliminate excess copper in bile and feces. Most plasma copper is present in ceruloplasmin. In Wilson s disease, the diminished availability of ceruloplasmin interferes with the function of enzymes that rely on ceruloplasmin as a copper donor (e.g. cytochrome oxidase, tyrosinase and superoxide dismutase). In addition, loss of copper-binding capacity in the serum leads to copper deposition in liver, brain and other organs, resulting in tissue damage. The mechanisms of toxicity are not fully understood, but may involve the formation of hydroxyl radicals via the Fenton reaction, which, in turn initiates a cascade of cellular cytotoxic events, including mitochondrial dysfunction, lipid peroxidation, disruption of calcium ion homeostasis, and cell death. [Pg.774]


See other pages where Serum lipid peroxidation is mentioned: [Pg.180]    [Pg.154]    [Pg.266]    [Pg.132]    [Pg.135]    [Pg.140]    [Pg.141]    [Pg.141]    [Pg.669]    [Pg.40]    [Pg.674]    [Pg.180]    [Pg.154]    [Pg.266]    [Pg.132]    [Pg.135]    [Pg.140]    [Pg.141]    [Pg.141]    [Pg.669]    [Pg.40]    [Pg.674]    [Pg.288]    [Pg.289]    [Pg.185]    [Pg.32]    [Pg.106]    [Pg.156]    [Pg.157]    [Pg.185]    [Pg.222]    [Pg.269]    [Pg.962]    [Pg.855]    [Pg.136]    [Pg.106]    [Pg.587]    [Pg.29]   
See also in sourсe #XX -- [ Pg.140 , Pg.142 ]




SEARCH



Lipid peroxide

Lipids peroxidation

© 2024 chempedia.info