Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Symmetry substituents

The way the substituents affect the rate of the reaction can be rationalised with the aid of the Frontier Molecular Orbital (FMO) theory. This theory was developed during a study of the role of orbital symmetry in pericyclic reactions by Woodward and Hoffinann and, independently, by Fukui Later, Houk contributed significantly to the understanding of the reactivity and selectivity of these processes. ... [Pg.4]

The skeleton vibrations. C3NSX, CjNSXj. C NSXY, or C NSXj (where X or Y is the monoatomic substituent or the atom of the substituent which is bonded to the ring for polyatomic substituents), have been classified into suites, numbered I to X. A suite is a set of absorption bands or diffusion lines assigned, to a first approximation, to a same mode of vibration for the different molecules. Suites I to VIII concern bands assigned to A symmetry vibrations, while suites IX and X describe bands assigned to A" symmetry vibrations. For each of these suites, the analysis of the various published works gives the limits of the observed frequencies (Table 1-29). [Pg.64]

Let us now examine the Diels-Alder cycloaddition from a molecular orbital perspective Chemical experience such as the observation that the substituents that increase the reac tivity of a dienophile tend to be those that attract electrons suggests that electrons flow from the diene to the dienophile during the reaction Thus the orbitals to be considered are the HOMO of the diene and the LUMO of the dienophile As shown m Figure 10 11 for the case of ethylene and 1 3 butadiene the symmetry properties of the HOMO of the diene and the LUMO of the dienophile permit bond formation between the ends of the diene system and the two carbons of the dienophile double bond because the necessary orbitals overlap m phase with each other Cycloaddition of a diene and an alkene is said to be a symmetry allowed reaction... [Pg.414]

Multiple Chiral Centers. The number of stereoisomers increases rapidly with an increase in the number of chiral centers in a molecule. A molecule possessing two chiral atoms should have four optical isomers, that is, four structures consisting of two pairs of enantiomers. However, if a compound has two chiral centers but both centers have the same four substituents attached, the total number of isomers is three rather than four. One isomer of such a compound is not chiral because it is identical with its mirror image it has an internal mirror plane. This is an example of a diaster-eomer. The achiral structure is denoted as a meso compound. Diastereomers have different physical and chemical properties from the optically active enantiomers. Recognition of a plane of symmetry is usually the easiest way to detect a meso compound. The stereoisomers of tartaric acid are examples of compounds with multiple chiral centers (see Fig. 1.14), and one of its isomers is a meso compound. [Pg.47]

Applications. Among the P—O- and P—N-substituted polymers, the fluoroalkoxy- and aryloxy-substituted polymers have so far shown the greatest commercial promise (14—16). Both poly[bis(2,2,2-trifluoroethoxy)phosphazene] [27290-40-0] and poly(diphenoxyphosphazene) [28212-48-8] are microcrystalline, thermoplastic polymers. However, when the substituent symmetry is dismpted with a randomly placed second substituent of different length, the polymers become amorphous and serve as good elastomers. Following initial development of the fluorophosphazene elastomers by the Firestone Tire and Rubber Co., both the fluoroalkoxy (EYPEL-F) and aryloxy (EYPEL-A) elastomers were manufactured by the Ethyl Corp. in the United States from the mid-1980s until 1993 (see ELASTOLffiRS,SYNTHETic-PHOSPHAZENEs). [Pg.257]

When additional substituents ate bonded to other ahcycHc carbons, geometric isomers result. Table 2 fists primary (1°), secondary (2°), and tertiary (3°) amine derivatives of cyclohexane and includes CAS Registry Numbers for cis and trans isomers of the 2-, 3-, and 4-methylcyclohexylamines in addition to identification of the isomer mixtures usually sold commercially. For the 1,2- and 1,3-isomers, the racemic mixture of optical isomers is specified ultimate identification by CAS Registry Number is fisted for the (+) and (—) enantiomers of /n t-2-methylcyclohexylamine. The 1,4-isomer has a plane of symmetry and hence no chiral centers and no stereoisomers. The methylcyclohexylamine geometric isomers have different physical properties and are interconvertible by dehydrogenation—hydrogenation through the imine. [Pg.206]

Dithiolane (132) derivatives also possess non-planar skeletons the most important conformation is probably of symmetry C2 (half-chair). The dithiolane ring may be quite flexible and a minimum energy. conformation is only well defined if there is a bulky substituent at the 2-position. [Pg.35]

Since two quaternary atoms and four CH atoms appear in the C NMR spectrum, the latter with a benzenoid coupling constant of 7-9 Hz, this is a disubstituted benzene ring, and the C signal with 5c = 162.2 fits a phenoxy C atom. The keto carbonyl (5c = 204.9) and methyl (5c = 26.6) resonances therefore point to an acetyl group as the only meaningful second substituent. Accordingly, it must be either o- or m-hydroxyacetophenone A or B the para isomer would show only four benzenoid C signals because of the molecular symmetry. [Pg.192]

It is particularly interesting to consider the influence of the substituents R and Rj in diphenylol alkanes of the type shown in Figure 20.12. Such variations will influence properties because they affect the flexibility of the molecule about the central C-atom, the spatial symmetry of the molecule and also the interchain attraction, the three principal factors determining the physical nature of a high polymer. [Pg.580]

Compounds in which one or more carbon atoms have four nonidentical substituents are the largest class of chiral molecules. Carbon atoms with four nonidentical ligands are referred to as asymmetric carbon atoms because the molecular environment at such a carbon atom possesses no element of symmetry. Asymmetric carbons are a specific example of a stereogenic center. A stereogenic center is any structural feature that gives rise to chirality in a molecule. 2-Butanol is an example of a chiral molecule and exists as two nonsuperimposable mirror images. Carbon-2 is a stereogenic center. [Pg.78]

The reason that the third stereoisomer is achiral is that the substituents on the two asymmetric carbons are located with respect to each other in such a way that a molecular plane of symmetry exists. Compounds that incorporate asymmetric atoms but are nevertheless achiral are called meso forms. This situation occurs whenever pairs of stereogenic centers are disposed in the molecule in such a way as to create a plane of symmetry. A... [Pg.85]

All three structures have 0(, symmetry and are very similar. The bond length from the central atom to the carbonyl group is slightly different in each compound, and it is longest for the molybdenum substituent. The internal structure of the carbonyl groups is essentially unchanged by substitution. ... [Pg.104]

Transmission through a heterocyclic ring, both six- and flve-membered. Due to the reduced symmetry of the ring, in general, two para and several meta relations between substituent and side-chain exist. [Pg.215]

Reduction in cation symmetry (ideally to Cl) lowers the freezing point and markedly expands the range of room-temperature liquid salts. Table 3.1-4 shows the effect of symmetry for a series of [NR4]X salts, in which all the cations contain 20 carbon atoms in the allcyl substituents [44]. [Pg.49]

Table 3.1-4 Effects of cation symmetry on the melting points of isomeric tetraalkylammonium salts. In each case the cation (designated [N op] ) has four linear alkyl substituents, together containing a total of 20 carbons. Salts that are liquid at room temperature are indicated by /. Table 3.1-4 Effects of cation symmetry on the melting points of isomeric tetraalkylammonium salts. In each case the cation (designated [N op] ) has four linear alkyl substituents, together containing a total of 20 carbons. Salts that are liquid at room temperature are indicated by /.
The effect of the substituents on chain mobility and chain packing has been related to the gas transport properties [209]. Role of symmetry of methyl group placement on bisphenol rings in PES shows the permeability coefficients in the following order ... [Pg.57]

We describe the situation by saying that the receptor provides a chiral environment for the substrate. In the absence of a chiral environment, the two red substituents are chemically identical, but in the presence of the chiral environment, they are chemically distinctive (Figure 9.18a). The situation is similar to what happens when you pick up a coffee mug. By itself, the mug has a plane of symmetry and is achiral. You could, if you wanted, drink from on either side of the handle. When you pick up the mug, however, your hand provides a chiral environment so one side becomes much more accessible and easier to drink from than the other (Figure 9.18b). [Pg.320]

Chiral (Section 9.2) Having handedness. Chiral molecules are those that do not have a plane of symmetry and are therefore not superimposable on their mirror image. A chiral molecule thus exists in two forms, one right-handed and one left-handed. The most common cause of chirality in a molecule is the presence of a carbon atom that is bonded to four different substituents. [Pg.1238]


See other pages where Symmetry substituents is mentioned: [Pg.50]    [Pg.133]    [Pg.50]    [Pg.133]    [Pg.4]    [Pg.6]    [Pg.207]    [Pg.81]    [Pg.73]    [Pg.440]    [Pg.253]    [Pg.267]    [Pg.368]    [Pg.58]    [Pg.62]    [Pg.27]    [Pg.48]    [Pg.38]    [Pg.46]    [Pg.606]    [Pg.18]    [Pg.923]    [Pg.62]    [Pg.71]    [Pg.537]    [Pg.362]    [Pg.36]    [Pg.230]    [Pg.7]    [Pg.149]    [Pg.49]    [Pg.52]    [Pg.248]    [Pg.292]   
See also in sourсe #XX -- [ Pg.310 ]




SEARCH



© 2024 chempedia.info