Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Synthetic poly

If the stacking faults occur only rarely (say, every 105 layers on average), the result is a polysynthetic twinned crystal (cf. Fig. 18.8, p. 223). Depending on the frequency of the stacking faults, there is a smooth transition between crystals with stacking faults and poly synthetic twinning. [Pg.28]

Organic polyesters, obtained either from a diacid and a mono-alcohoi, or from poly-alcohols and a monoacid, or from di-alcohols and a diacid. This class represented 29% of the synthetic base market in France in 1992. [Pg.279]

A polymer is a macromolecule that is constructed by chemically linking together a sequent of molecular fragments. In simple synthetic polymers such as polyethylene or polystyrer all of the molecular fragments comprise the same basic unit (or monomer). Other poly me contain mixtures of monomers. Proteins, for example, are polypeptide chains in which eac unit is one of the twenty amino acids. Cross-linking between different chains gives rise to j-further variations in the constitution and structure of a polymer. All of these features me affect the overall properties of the molecule, sometimes in a dramatic way. Moreover, or... [Pg.439]

As the demand for rubber increased so did the chemical industry s efforts to prepare a synthetic sub stitute One of the first elastomers (a synthetic poly mer that possesses elasticity) to find a commercial niche was neoprene discovered by chemists at Du Pont in 1931 Neoprene is produced by free radical polymerization of 2 chloro 1 3 butadiene and has the greatest variety of applications of any elastomer Some uses include electrical insulation conveyer belts hoses and weather balloons... [Pg.408]

Another type of synthetic polymer-based chiral stationary phase is formed when chiral catalyst are used to initiate the polymerisation. In the case of poly(methyl methacrylate) polymers, introduced by Okamoto, the chiraUty of the polymer arises from the heUcity of the polymer and not from any inherent chirahty of the individual monomeric subunits (109). Columns of this type (eg, Chiralpak OT) are available from Chiral Technologies, Inc., or J. T. Baker Inc. [Pg.68]

Dichromated Resists. The first compositions widely used as photoresists combine a photosensitive dichromate salt (usually ammonium dichromate) with a water-soluble polymer of biologic origin such as gelatin, egg albumin (proteins), or gum arabic (a starch). Later, synthetic polymers such as poly(vinyl alcohol) also were used (11,12). Irradiation with uv light (X in the range of 360—380 nm using, for example, a carbon arc lamp) leads to photoinitiated oxidation of the polymer and reduction of dichromate to Ct(III). The photoinduced chemistry renders exposed areas insoluble in aqueous developing solutions. The photochemical mechanism of dichromate sensitization of PVA (summarized in Fig. 3) has been studied in detail (13). [Pg.115]

Polyoxyethylene. Synthetic polymers with a variety of compositionaHy similar chemical stmctures are as follows. Based on polarity, poly(oxymethylene) (1) would be expected to be water soluble. It is a highly crystalline polymer used in engineering plastics, but it is not water-soluble (see... [Pg.315]

Four other groups of synthetic adhesives find uses in secondary processing, ie, overlaying, assembly gluing, etc, and in furniture and cabinet manufacture. Poly(vinyl acetate) (PVA) adhesives are widely used in appHcation of veneers and other overlays to panel substrates and in some unit-assembly operations. PVA adhesives are an emulsion of polyvinyl acetate in water and cure by loss of water. The PVA adhesives are somewhat... [Pg.378]

Nitrile mbber finds broad application in industry because of its excellent resistance to oil and chemicals, its good flexibility at low temperatures, high abrasion and heat resistance (up to 120°C), and good mechanical properties. Nitrile mbber consists of butadiene—acrylonitrile copolymers with an acrylonitrile content ranging from 15 to 45% (see Elastomers, SYNTHETIC, NITRILE RUBBER). In addition to the traditional applications of nitrile mbber for hoses, gaskets, seals, and oil well equipment, new applications have emerged with the development of nitrile mbber blends with poly(vinyl chloride) (PVC). These blends combine the chemical resistance and low temperature flexibility characteristics of nitrile mbber with the stability and ozone resistance of PVC. This has greatly expanded the use of nitrile mbber in outdoor applications for hoses, belts, and cable jackets, where ozone resistance is necessary. [Pg.186]

By far the largest volume synthetic alcohol is 2-ethylexanol [104-76-7] CgH gO, used mainly in production of the poly(vinyl chloride) plasticizer bis(2-ethylhexyl) phthalate [117-81-7], commonly called dioctyl phthalate [117-81-7] or DOP (see Plasticizers). A number of other plasticizer... [Pg.454]

However, because of the low melting poiats and poor hydrolytic stabiUty of polyesters from available iatermediates, Carothers shifted his attention to linear ahphatic polyamides and created nylon as the first commercial synthetic fiber. It was nearly 10 years before. R. Whinfield and J. T. Dickson were to discover the merits of poly(ethylene terephthalate) [25038-59-9] (PET) made from aromatic terephthaUc acid [100-21-0] (TA) and ethylene glycol [107-21-1] (2G). [Pg.325]

AUoys of ceUulose with up to 50% of synthetic polymers (polyethylene, poly(vinyl chloride), polystyrene, polytetrafluoroethylene) have also been made, but have never found commercial appUcations. In fact, any material that can survive the chemistry of the viscose process and can be obtained in particle sizes of less than 5 p.m can be aUoyed with viscose. [Pg.350]

Synthetic Polymers. Examples of polymers in this class include acrylamide—acryHc polymers and their derivatives, polyamines and their derivatives, poly-(ethylene oxide), and allylamine polymers. [Pg.32]

The principal classes of high performance fibers are derived from rigid-rod polymers, gel spun fibers, modified carbon fibers, synthetic vitreous fibers, and poly(phenyiene sulfide) fibers. [Pg.64]

Synthetic oils have been classified by ASTM into synthetic hydrocarbons, organic esters, others, and blends. Synthetic oils may contain the following compounds diaLkylben2enes, poly(a-olefins) polyisobutylene, cycloaUphatics, dibasic acid esters, polyol esters, phosphate esters, siUcate esters, polyglycols, polyphenyl ethers, siUcones, chlorofluorocarbon polymers, and perfluoroalkyl polyethers. [Pg.368]

Applications. Among the P—O- and P—N-substituted polymers, the fluoroalkoxy- and aryloxy-substituted polymers have so far shown the greatest commercial promise (14—16). Both poly[bis(2,2,2-trifluoroethoxy)phosphazene] [27290-40-0] and poly(diphenoxyphosphazene) [28212-48-8] are microcrystalline, thermoplastic polymers. However, when the substituent symmetry is dismpted with a randomly placed second substituent of different length, the polymers become amorphous and serve as good elastomers. Following initial development of the fluorophosphazene elastomers by the Firestone Tire and Rubber Co., both the fluoroalkoxy (EYPEL-F) and aryloxy (EYPEL-A) elastomers were manufactured by the Ethyl Corp. in the United States from the mid-1980s until 1993 (see ELASTOLffiRS,SYNTHETic-PHOSPHAZENEs). [Pg.257]

Polymer Solutions. Perhaps the most extensively studied macromolecular Hquid crystals are the synthetic polypeptides, such as poly( y-benzyl L-glutamate) [25513-40-0] (PBLG). PBLG is a homopolymer of the L-enantiomorph of a single amino acid with the foUowiag repeat unit. [Pg.201]

Alkylated aromatic lubricants, phosphate esters, polyglycols, chlorotrifluoroethylene, siUcones, and siUcates are among other synthetics that came into production during much that same period (28,29). Polyphenyl ethers and perfluoroalkyl polyethers have followed as fluids with distinctive high temperature stabiUty. Although a range of these synthetic fluids find appHcations which employ their unique individual characteristics, total production of synthetics represent only on the order of 2% of the lubricant market. Poly(a-olefin)s, esters, polyglycols, and polybutenes represent the types of primary commercial interest. [Pg.243]

Poly(alkylene glycol)s are also used as lubricity additives ia water-based synthetic cutting and grinding fluids (36), and ia aqueous metalworking fluids. Under the high frictional heating at the tool or die contact with the workpiece, the polyalkylene glycol comes out of solution ia fine droplets which coat the hot metal surfaces. [Pg.246]

Although synthetic lubrication oil production amounts to only about 2% of the total market, volume has been increasing rapidly (67). Growth rates of the order of 20% per year for poly( a-olefin)s, 10% for polybutenes, and 8% for esters (28) reflect increasing automotive use and these increases would accelerate if synthetics were adopted for factory fill of engines by automotive manufacturers. The estimated production of poly( a-olefin)s for lubricants appears to be approximately 100,000 m /yr, esters 75,000, poly(alkylene glycol)s 42,000, polybutenes 38,000, phosphates 20,000, and dialkyl benzene 18,000 (28,67). The higher costs reflected in Table 18 (18,28) have restricted the volume of siUcones, chlorotrifluoroethylene, perfluoroalkylpolyethers, and polyphenyl ethers. [Pg.255]


See other pages where Synthetic poly is mentioned: [Pg.165]    [Pg.117]    [Pg.165]    [Pg.117]    [Pg.149]    [Pg.551]    [Pg.1142]    [Pg.1191]    [Pg.537]    [Pg.466]    [Pg.783]    [Pg.790]    [Pg.923]    [Pg.1055]    [Pg.68]    [Pg.115]    [Pg.207]    [Pg.209]    [Pg.241]    [Pg.264]    [Pg.427]    [Pg.284]    [Pg.363]    [Pg.535]    [Pg.535]    [Pg.64]    [Pg.150]    [Pg.265]    [Pg.245]    [Pg.248]    [Pg.250]    [Pg.252]   
See also in sourсe #XX -- [ Pg.310 ]




SEARCH



© 2024 chempedia.info