Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Mass spectrometry environmental samples

Unger et al. [217] determined butyltins in non saline water by gas chromatography with flame photometric detection and confirmation by mass spectrometry. The sample was extracted with tropalone in //-hexane and organotin compounds derivatised with n-hexyl magnesium bromide to form tetraalkyltins. The n-hexyl derivatives of methyltin and butyltin species were easily separated and quantified relative to an internal standard (triphenyltin chloride) which was not found to be present in environmental samples and did not interfere. [Pg.431]

See also Air Analysis Sampling Outdoor Air. Environmental Analysis. Gas Chromatography Column Technology Instrumentation Detectors Mass Spectrometry Environmental Applications. Mass Spectrometry ... [Pg.654]

See also Extraction Solvent Extraction Principles Solid-Phase Extraction. Fluorescence Environmental Applications. Gas Chromatography Mass Spectrometry Environmental Applications. Gravimetry. Headspace Analysis Static Purge and Trap. Immunoassays Overview. Infrared Spectroscopy Overview. Liquid Chromatography Overview. Sampling Theory. [Pg.5092]

Chai, M. and Pawliszyn, J. Analysis of environmental air samples by solid-phase microextraction and gas chromatography/ion trap mass spectrometry. Environmental Science and Technology 1995, 29 (3), 693-701. [Pg.661]

Environment. Detection of environmental degradation products of nerve agents directly from the surface of plant leaves using static secondary ion mass spectrometry (sims) has been demonstrated (97). Pinacolylmethylphosphonic acid (PMPA), isopropylmethylphosphonic acid (IMPA), and ethylmethylphosphonic acid (EMPA) were spiked from aqueous samples onto philodendron leaves prior to analysis by static sims. The minimum detection limits on philodendron leaves were estimated to be between 40 and 0.4 ng/mm for PMPA and IMPA and between 40 and 4 ng/mm for EMPA. Sims analyses of IMPA adsorbed on 10 different crop leaves were also performed in order to investigate general apphcabiflty of static sims for... [Pg.247]

Mass Spectrometer. The mass spectrometer is the principal analytical tool of direct process control for the estimation of tritium. Gas samples are taken from several process points and analy2ed rapidly and continually to ensure proper operation of the system. Mass spectrometry is particularly useful in the detection of diatomic hydrogen species such as HD, HT, and DT. Mass spectrometric detection of helium-3 formed by radioactive decay of tritium is still another way to detect low levels of tritium (65). Accelerator mass spectroscopy (ams) has also been used for the detection of tritium and carbon-14 at extremely low levels. The principal appHcation of ams as of this writing has been in archeology and the geosciences, but this technique is expected to faciUtate the use of tritium in biomedical research, various clinical appHcations, and in environmental investigations (66). [Pg.15]

Identification of stmctures of toxic chemicals in environmental samples requires to use modern analytical methods, such as gas chromatography (GC) with element selective detectors (NPD, FPD, AED), capillary electrophoresis (CE) for screening purposes, gas chromatography/mass-spectrometry (GC/MS), gas chromatography / Fourier transform infra red spectrometry (GC/FTIR), nucleai magnetic resonance (NMR), etc. [Pg.416]

The control of materials purity and of environmental conditions requires to implement physico-chemical analysis tools like ESC A, RBS, AUGER, SEM, XTM, SIMS or others. The principle of SIMS (Secondary Ion Mass Spectroscopy) is shown in Eig. 31 an ion gun projects common ions (like 0+, Ar+, Cs+, Ga+,. ..) onto the sample to analyze. In the same time a flood gun projects an electron beam on the sample to neutralize the clusters. The sample surface ejects electrons, which are detected with a scintillator, and secondary ions which are detected by mass spectrometry with a magnetic quadrupole. [Pg.340]

An environmental protocol has been developed to assess the significance of newly discovered hazardous substances that might enter soil, water, and the food chain. Using established laboratory procedures and C-labeled 2,3,7,8-tetra-chlorodibenzo-p-dioxin (TCDD), gas chromatography, and mass spectrometry, we determined mobility of TCDD by soil TLC in five soils, rate and amount of plant uptake in oats and soybeans, photodecomposition rate and nature of the products, persistence in two soils at 1,10, and 100 ppm, and metabolism rate in soils. We found that TCDD is immobile in soils, not readily taken up by plants, subject to photodecomposition, persistent in soils, and slowly degraded in soils to polar metabolites. Subsequent studies revealed that the environmental contamination by TCDD is extremely small and not detectable in biological samples. [Pg.105]

Reliable analytical methods are available for determination of many volatile nitrosamines at concentrations of 0.1 to 10 ppb in a variety of environmental and biological samples. Most methods employ distillation, extraction, an optional cleanup step, concentration, and final separation by gas chromatography (GC). Use of the highly specific Thermal Energy Analyzer (TEA) as a GC detector affords simplification of sample handling and cleanup without sacrifice of selectivity or sensitivity. Mass spectrometry (MS) is usually employed to confirm the identity of nitrosamines. Utilization of the mass spectrometer s capability to provide quantitative data affords additional confirmatory evidence and quantitative confirmation should be a required criterion of environmental sample analysis. Artifactual formation of nitrosamines continues to be a problem, especially at low levels (0.1 to 1 ppb), and precautions must be taken, such as addition of sulfamic acid or other nitrosation inhibitors. The efficacy of measures for prevention of artifactual nitrosamine formation should be evaluated in each type of sample examined. [Pg.331]

Baser H-R, MD Muller (1993) Enantioselective determination of chlordane components, metabolites, and photoconversion products in environmental samples using chiral high-resolution gas chromatography and mass spectrometry. Environ Sci Technol 27 1211-1220. [Pg.40]

Analytical methods for parent chloroacetanilide herbicides in soil typically involve extraction of the soil with solvent, followed by solid-phase extraction (SPE), and analysis by gas chromatography/electron capture detection (GC/ECD) or gas chromatog-raphy/mass spectrometry (GC/MS). Analytical methods for parent chloroacetanilides in water are similarly based on extraction followed by GC with various detection techniques. Many of the water methods, such as the Environmental Protection Agency (EPA) official methods, are multi-residue methods that include other compound classes in addition to chloroacetanilides. While liquid-liquid partitioning was used initially to extract acetanilides from water samples, SPE using... [Pg.345]

The need to understand the fate of pesticides in the environment has necessitated the development of analytical methods for the determination of residues in environmental media. Adoption of methods utilizing instrumentation such as gas chro-matography/mass spectrometry (GC/MS), liquid chromatography/mass spectrometry (LC/MS), liquid chromatography/tandem mass spectrometry (LC/MS/MS), or enzyme-linked immunosorbent assay (ELISA) has allowed the detection of minute amounts of pesticides and their degradation products in environmental samples. Sample preparation techniques such as solid-phase extraction (SPE), accelerated solvent extraction (ASE), or solid-phase microextraction (SPME) have also been important in the development of more reliable and sensitive analytical methods. [Pg.605]

Analytical methods for quantifying americium in environmental samples are summarized in Table 7-2. The methods that are commonly used in the analysis of americium based on activity are gross a analysis, a-spectrometry and gamma-ray spectrometry. MS detection techniques are used to measure the mass of americium in environmental samples. (The mass-activity conversion factor for 241Am is 0.29 (lCi/ lg or 3.43 ig/ p,Ci [Harvey etal. 1993]). [Pg.207]

There are methods available to quantify the total mass of americium in environmental samples. Mass spectrometric methods provide total mass measurements of americium isotopes (Dacheux and Aupiais 1997, 1998 Halverson 1984 Harvey et al. 1993) however, these detection methods have not gained the same popularity as is found for the radiochemical detection methods. This may relate to the higher purchase price of a MS system, the increased knowledge required to operate the equipment, and the selection by EPA of a-spectrometry for use in its standard analytical methods. Fluorimetric methods, which are commonly used to determine the total mass of uranium and curium in environmental samples, have limited utility to quantify americium, due to the low quantum yield of fluorescence for americium (Thouvenout et al. 1993). [Pg.213]

Methods exist for determining levels of diisopropyl methylphosphonate in air, soil, and water. These methods include separation by GC coupled with FID and flame photometric detection (FPD), determination by infrared and Raman spectroscopy, separation by ionization mass spectrometry, determination utilizing piezoelectric crystals, and determination by gas-sensitive microsensors. Table 6-2 summarizes the methods that have been used to analyze environmental samples for diisopropyl methylphosphonate. [Pg.131]

Shahgholi, M. Ohorodnik, S. Callahan, J. H. Fox, A. Trace detection of underiva-tized muramic acid in environmental dust samples by microcolumn liquid chromatography electrospray-tandem mass spectrometry. Anal. Chem. 1997, 69, 1956-1960. [Pg.35]


See other pages where Mass spectrometry environmental samples is mentioned: [Pg.5061]    [Pg.5062]    [Pg.343]    [Pg.244]    [Pg.323]    [Pg.386]    [Pg.358]    [Pg.285]    [Pg.252]    [Pg.138]    [Pg.346]    [Pg.346]    [Pg.440]    [Pg.607]    [Pg.671]    [Pg.724]    [Pg.758]    [Pg.818]    [Pg.4]    [Pg.50]    [Pg.451]    [Pg.28]    [Pg.28]    [Pg.197]    [Pg.266]    [Pg.279]    [Pg.31]    [Pg.36]   
See also in sourсe #XX -- [ Pg.62 , Pg.146 ]




SEARCH



Environmental samples

Environmental sampling

Sample mass

Sample mass spectrometry

Sample spectrometry

Tandem mass spectrometry environmental samples

© 2024 chempedia.info