Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Dew point process

These sub-dew point processes can increase the overall Claus plant sulfur recovery to up to 99%, as limited by equilibrium conversion and sulfur vapor pressure losses. Elf Aquitaine s Sulfreen process, Amoco s cold bed adsorption (CBA) process, and the Mineral and Chemical Resource Company (MCRC) process licensed by Delta Hudson are all variations on the cold bed sub-dew point process. [Pg.213]

The most important sensors for control of the drying process are product, inlet and exhaust air temperature, and sensor for airflow measurement, located in the air transport system. Other sensors for the spray agglomeration process are atomization air pressure and volume, pressure drops (across the inlet filter the product container with the product being processed, and outlet process air filter), inlet air humidity or dew point, process filter cleaning frequency and duration, spray rate for the binder solution, and total process time. [Pg.277]

Linde A. G., 1988, The Clinsulf Sub-Dew-Point Process for Sulphur Recovery, reprint from Linde Reports on Science and Technology, No. 44, Linde, A.G. [Pg.728]

Example 6.4 The process in Fig. 6.2 is to have its hot utility supplied by a furnace. The theoretical flame temperature for combustion is 1800°C, and the acid dew point for the flue gas is 160°C. Ambient temperature is 10°C. Assume = 10°C for process-to-process heat transfer but = 30°C for flue-gas-to-process heat transfer. A high value for for flue-gas-to-process heat... [Pg.191]

Both the reboiling and condensing processes normally take place over a range of temperature. Practical considerations, however, usually dictate that the heat to the reboiler must be supplied at a temperature above the dew point of the vapor leaving the reboiler and that the heat removed in the condenser must be removed at a temperature lower than the bubble point of the liquid. Hence, in preliminary design at least, both reboiling and condensing can be assumed to take place at constant temperatures. ... [Pg.341]

If the experiment was now reversed, starling from A and increasing the pressure, the first drop of ethane liquid would appear at point C, the dew point of the gas. Remember that throughoufthis process, isothermal conditions are maintained. [Pg.99]

The gas processing options described in the previous section were designed primarily to meet on-site usage or evacuation specifications. Before delivery to the customer further processing would normally be carried out at dedicated gas processing plants, which may receive gas from many different gas and oil fields. Gas piped to such plants is normally treated to prevent liquid drop out under pipeline conditions (dew point control) but may still contain considerable volumes of natural gas liquids (NGL) and also contaminants. [Pg.253]

Some industrial processes produce predorninately latent air conditioning loads. Others dictate very low humidities and when the dew point falls below 0°C, free2ing becomes a major concern. Dehydration equipment, using soHd sorbents such as siUca gel and activated alurnina, or Hquid sorbents such as lithium chloride brine and triethylene glycol, may be used. The process is exothermic and may require cooling the exiting air stream to meet space requirements. Heat is also required for reactivation of the sorbent material. [Pg.362]

Compounds having low vapor pressures at room temperature are treated in water-cooled or air-cooled condensers, but more volatile materials often requite two-stage condensation, usually water cooling followed by refrigeration. Minimising noncondensable gases reduces the need to cool to extremely low dew points. Partial condensation may suffice if the carrier gas can be recycled to the process. Condensation can be especially helpful for primary recovery before another method such as adsorption or gas incineration. Both surface condensers, often of the finned coil type, and direct-contact condensers are used. Direct-contact condensers usually atomize a cooled, recirculated, low vapor pressure Hquid such as water into the gas. The recycle hquid is often cooled in an external exchanger. [Pg.389]

Anhydrous calcium chloride absorbs water to a capacity of 3.5 kg/kg of calcium chloride and forms a nonreuseable brine. This technique is best suited for remote appHcations where modest dew point depressions are required and gas processing volumes are small. [Pg.171]

Absorber oil units offer the advantage that Hquids can be removed at the expense of only a small (34—69 kPa (4.9—10.0 psi)) pressure loss in the absorption column. If the feed gas is available at pipeline pressure, then Httle if any recompression is required to introduce the processed natural gas into the transmission system. However, the absorption and subsequent absorber-oil regeneration process tends to be complex, favoring the simpler, more efficient expander plants. Separations using soHd desiccants are energy-intensive because of the bed regeneration requirements. This process option is generally considered only in special situations such as hydrocarbon dew point control in remote locations. [Pg.172]

N2, and traces of PH, CO2, E, and S large furnaces generate off-gas at a rate of about 120—180 m /min. In most installations the off-gas is passed through a series of Cottrell electrostatic precipitators which remove 80—95% of the dust particles. The precipitators ate operated at temperatures above the 180°C dew point of the phosphoms. The collected dust is either handled as a water slurry or treated dry. Einal disposal is to a landfill or the dust is partially recycled back to the process. The phosphoms is typically condensed in closed spray towers that maintain spray water temperatures between 20 and 60°C. The condensed product along with the accompanying spray water is processed in sumps where the water is separated and recycled to the spray condenser, and the phosphoms and impurities ate settled for subsequent purification. [Pg.351]

Favor adsorption for processes that require essentially complete removal of water vapor (adsorptive dehydration is capable of achieving dew point depres >45° C (80°F) molecular sieves are favored adsorbents. [Pg.458]

Small amounts of sulfuric acid mist or aerosol are always formed in sulfuric acid plants whenever gas streams are cooled, or SO and H2O react, below the sulfuric acid dew point. The dew point varies with gas composition and pressure but typically is 80—170°C. Higher and lower dew point temperatures are possible depending on the SO concentration and moisture content of the gas. Such mists are objectionable because of both corrosion in the process and stack emissions. [Pg.183]

Moisture measurements are important in the process industries because moisture can foul products, poison reactions, damage equipment, or cause explosions. Moisture measurements include both absolute-moisture methods and relative-humidity methods. The absolute methods are those that provide a primaiy output that can be directly calibrated in terms of dew-point temperature, molar concentration, or weight concentration. Loss of weight on heating is the most familiar of these methods. The relative-humidity methods are those that provide a primaiy output that can be more direc tly calibrated in terms of percentage of saturation of moisture. [Pg.765]

The need to obtain greater recoveries of the C9, C3, and C4S in natural gas has resulted in the expanded use of low-temperature processing of these streams. The majority of the natural gas processing at low temperatures to recover light hydrocarbons is now accomphshed using the turboexpander cycle. Feed gas is normally available from 1 to 10 MPa. The gas is first dehydrated to a dew point of 200 K and lower. After dehydration the feed is cooled with cold residue gas. Liquid produced at this point is separated before entering the expander and sent to the condensate stabilizer. The gas from the separator is... [Pg.1133]

Onshore or offshore gas plants are designed for either LNG rejection and gas injection, or LNG rejection and transmission for sale. In the case of offshore plants, onshore facilities further process the natural gas before transmission for sale. In either case, natural gas must be treated and then refrigerated to make rejection of heavy hydrocarbons possible. In plants where natural gas is treated for sale purposes, water and hydrocarbon dew points of the gas must also be controlled. [Pg.69]

As stated earlier, turboexpanders are normally used in cryogenic processes to produce isentropic expansion to cool down the process gas. Two common applications are natural gas processing plants and chemical plants. In natural gas processing plants, turboexpanders are installed to liquify heavier hydrocarbon components and produce lean natural gas with specified dew point limits to meet required standards. [Pg.348]

For expanders, the process engineer should be alert for outlet temperatures in the dew point range. For changes in design parameters, such as for proposed alternate modes of operation, the process engineer is best equipped to track this tendency. [Pg.219]

Martin, R. R.. Manning, F. S., and Reed, E. D., Watch for Elevated Dew Points in SO ,-Bearing Stack Gases, Hydrocarbon Processing, June, 1974. [Pg.341]

Environmental conditions under which solvent release from the adhesive on the substrate is produced must be carefully controlled. Humidity is critical because loss of heat due to solvent evaporation may allow attainment of the dew point (the evaporation of the solvent is an endothermic process), and then condensation of water on the adhesive can result. This phenomenon is often called moisture blooming. The presence of water on the adhesive film causes a detrimental effect because the autoadhesion of rubber chains is greatly inhibited. Therefore, humidity must be controlled and avoided by increasing the temperature during solvent evaporation. [Pg.575]

Since the boiling point properties of the components in the mixture being separated are so critical to the distillation process, the vapor-liquid equilibrium (VLE) relationship is of importance. Specifically, it is the VLE data for a mixture which establishes the required height of a column for a desired degree of separation. Constant pressure VLE data is derived from boiling point diagrams, from which a VLE curve can be constructed like the one illustrated in Figure 9 for a binary mixture. The VLE plot shown expresses the bubble-point and the dew-point of a binary mixture at constant pressure. The curve is called the equilibrium line, and it describes the compositions of the liquid and vapor in equilibrium at a constant pressure condition. [Pg.172]

To keep water from condensing as the gas is processed, it is necessary to dehydrate the gas (that is, remove water vapor) until the amount of water vapor remaining in the gas is less than that required to fully saturate the gas at all conditions of temperature and pressure. Since the dehydrated gas will have a lower dew point, dehydration is sometimes called dew point depression. For example, if the amount of water vapor in the 3,000 psig gas stream referred to earlier were reduced from 105 Ib/MMscf to 50 Ib/MMscf, the dew point would be reduced from 150°F to 127°F. That is, its dew point will be depressed by 23°F. [Pg.100]

There are many processes used in tail-gas treating. The Sulfreen and the Cold Bed Absorption (CBA) processes use two psirallel reactors in a cycle, where one reactor operates below the sulfur dew point to absorb the sulfur while the second is regenerated with heat to recover molten sulfur, tiven though sulfur recoveries with the additional reactors are normally 99-99.5% of the inlet stream to the Claus unit, incineration of the outlet gas may still be required. [Pg.174]

Gas dehydration is the process of removing water vapor from a gas stream to lower the temperature at which water will condense from the stream. This temperature is called the dew point of the gas. Most gas sales contracts specify a maximum value for the amount of water vapor allowable in the gas. Typical values are 7 Ib/MMscf in the Southern U.S., 4 Ib/MMscf in the Northern U.S. and 2 to 4 Ib/MMscf in Canada. These values correspond to dew points of approximately 32°F for 7 lb/ MMscf, 20°F for 4 lb MMscf, and 0°F for 2 Ib/MMscf in a 1,000 psi gas line. [Pg.195]


See other pages where Dew point process is mentioned: [Pg.302]    [Pg.213]    [Pg.205]    [Pg.302]    [Pg.213]    [Pg.205]    [Pg.191]    [Pg.254]    [Pg.360]    [Pg.362]    [Pg.137]    [Pg.171]    [Pg.171]    [Pg.514]    [Pg.41]    [Pg.76]    [Pg.399]    [Pg.399]    [Pg.327]    [Pg.350]    [Pg.88]    [Pg.88]    [Pg.327]    [Pg.1080]    [Pg.1161]    [Pg.336]    [Pg.171]    [Pg.98]   
See also in sourсe #XX -- [ Pg.457 ]




SEARCH



Dew point

Dewing

Point processes

© 2024 chempedia.info