Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Metabolites, polar

Hydrophobic phases are selective for the separation of less polar metabolites. Polar phases are selective for the separation of polar metabolites. This shall be demonstrated with three examples. [Pg.238]

Water solubility (polarity) is essential for excretion. Even though lipid-soluble compounds may also be excreted to primary urine, they are usually at least partially reabsorbed. The metabolites formed in the liver and extrahe-patic tissues remain free (i.e., not bound to proteins) and are, therefore, readily excreted. [Pg.269]

Separation media, with bimodal chemistry, are generally designed for the complete separation of complex samples, such as blood plasma serum, that typically contain molecules differing in properties such as size, charge, and polarity. The major principle of bifunctional separation relies on the pore size and functional difference in the media. For example, a polymer bead with hydrophilic large pores and hydrophobic small pores will not interact with and retain large molecules such as proteins, but will interact with and retain small molecules such as drugs and metabolites. [Pg.11]

Phospholipase C, 24 pK0, 125, 144-145 Polar metabolites, 165 Polymorphisms, 4 Polypharmacology, 190-192 Pooled variance, 228 Populations, 226-228, 232 Positive agonism, 49 Potency... [Pg.297]

The blood-brain barrier (BBB) forms a physiological barrier between the central nervous system and the blood circulation. It consists of glial cells and a special species of endothelial cells, which form tight junctions between each other thereby inhibiting paracellular transport. In addition, the endothelial cells of the BBB express a variety of ABC-transporters to protect the brain tissue against toxic metabolites and xenobiotics. The BBB is permeable to water, glucose, sodium chloride and non-ionised lipid-soluble molecules but large molecules such as peptides as well as many polar substances do not readily permeate the battier. [Pg.272]

An example of a separation primarily based on polar interactions using silica gel as the stationary phase is shown in figure 10. The macro-cyclic tricothecane derivatives are secondary metabolites of the soil fungi Myrothecium Verrucaia. They exhibit antibiotic, antifungal and cytostatic activity and, consequently, their analysis is of interest to the pharmaceutical industry. The column used was 25 cm long, 4.6 mm in diameter and packed with silica gel particles 5 p in diameter which should give approximately 25,000 theoretical plates if operated at the optimum velocity. The flow rate was 1.5 ml/min, and as the retention time of the last peak was about 40 minutes, the retention volume of the last peak would be about 60 ml. [Pg.305]

Organophosphate flame retardants and plasticisers Perfluorinated compounds Pharmaceuticals and personal care products Polar pesticides and their degradation/transformation products Surfactants and their metabolites... [Pg.200]

The complementary nature of APCI and ESI, APCI for less polar compounds (Phase I metabolites) and ESI for more polar compounds (Phase II metabolites). [Pg.249]

Phase II metabolism The reaction of a phase I metabolite with an endogenous compound, e.g. glucuronic acid, to form a polar compound that is eliminated from the body. [Pg.309]

Many of the phase 1 enzymes are located in hydrophobic membrane environments. In vertebrates, they are particularly associated with the endoplasmic reticulum of the liver, in keeping with their role in detoxication. Lipophilic xenobiotics are moved to the liver after absorption from the gut, notably in the hepatic portal system of mammals. Once absorbed into hepatocytes, they will diffuse, or be transported, to the hydrophobic endoplasmic reticulum. Within the endoplasmic reticulum, enzymes convert them to more polar metabolites, which tend to diffuse out of the membrane and into the cytosol. Either in the membrane, or more extensively in the cytosol, conjugases convert them into water-soluble conjugates that are ready for excretion. Phase 1 enzymes are located mainly in the endoplasmic reticulum, and phase 2 enzymes mainly in the cytosol. [Pg.25]

The oxidation of OPs can bring detoxication as well as activation. Oxidative attack can lead to the removal of R groups (oxidative dealkylation), leaving behind P-OH, which ionizes to PO . Such a conversion looks superficially like a hydrolysis, and was sometimes confused with it before the great diversity of P450-catalyzed biotransformations became known. Oxidative deethylation yields polar ionizable metabolites and generally causes detoxication (Eto 1974 Batten and Hutson 1995). Oxidative demethy-lation (0-demethylation) has been demonstrated during the metabolism of malathion. [Pg.197]

An environmental protocol has been developed to assess the significance of newly discovered hazardous substances that might enter soil, water, and the food chain. Using established laboratory procedures and C-labeled 2,3,7,8-tetra-chlorodibenzo-p-dioxin (TCDD), gas chromatography, and mass spectrometry, we determined mobility of TCDD by soil TLC in five soils, rate and amount of plant uptake in oats and soybeans, photodecomposition rate and nature of the products, persistence in two soils at 1,10, and 100 ppm, and metabolism rate in soils. We found that TCDD is immobile in soils, not readily taken up by plants, subject to photodecomposition, persistent in soils, and slowly degraded in soils to polar metabolites. Subsequent studies revealed that the environmental contamination by TCDD is extremely small and not detectable in biological samples. [Pg.105]


See other pages where Metabolites, polar is mentioned: [Pg.301]    [Pg.101]    [Pg.1041]    [Pg.307]    [Pg.308]    [Pg.268]    [Pg.346]    [Pg.352]    [Pg.353]    [Pg.165]    [Pg.165]    [Pg.165]    [Pg.247]    [Pg.1001]    [Pg.63]    [Pg.201]    [Pg.249]    [Pg.87]    [Pg.121]    [Pg.129]    [Pg.134]    [Pg.143]    [Pg.20]    [Pg.26]    [Pg.30]    [Pg.42]    [Pg.51]    [Pg.54]    [Pg.118]    [Pg.118]    [Pg.131]    [Pg.184]    [Pg.195]    [Pg.197]    [Pg.200]    [Pg.213]    [Pg.234]   


SEARCH



© 2024 chempedia.info