Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Kinetics parameter

The applications of this simple measure of surface adsorbate coverage have been quite widespread and diverse. It has been possible, for example, to measure adsorption isothemis in many systems. From these measurements, one may obtain important infomiation such as the adsorption free energy, A G° = -RTln(K ) [21]. One can also monitor tire kinetics of adsorption and desorption to obtain rates. In conjunction with temperature-dependent data, one may frirther infer activation energies and pre-exponential factors [73, 74]. Knowledge of such kinetic parameters is useful for teclmological applications, such as semiconductor growth and synthesis of chemical compounds [75]. Second-order nonlinear optics may also play a role in the investigation of physical kinetics, such as the rates and mechanisms of transport processes across interfaces [76]. [Pg.1289]

TPD Temperature programmed desorption After pre-adsorption of gases on a surface, the desorption and/or reaction products are measured while the temperature Increases linearly with time. Coverages, kinetic parameters, reaction mechanism... [Pg.1852]

Suffice it to say that a dynamic model of this system was proposed that allowed the estimation of kinetic parameters and gave reasonable agreement with the experimental observations in the bioreactor [22]. [Pg.562]

Using the coordinates of special geometries, minima, and saddle points, together with the nearby values of potential energy, you can calculate spectroscopic properties and macroscopic therm ody-riatriic and kinetic parameters, sncfi as enthalpies, entropies, and thermal rate constants. HyperChem can provide the geometries and energy values for many of these ealeulatiori s. [Pg.32]

A second requirement is that the rate law for the chemical reaction must be known for the period in which measurements are made. In addition, the rate law should allow the kinetic parameters of interest, such as rate constants and concentrations, to be easily estimated. For example, the rate law for a reaction that is first order in the concentration of the analyte. A, is expressed as... [Pg.624]

Photoinitiation is not as important as thermal initiation in the overall picture of free-radical chain-growth polymerization. The foregoing discussion reveals, however, that the contrast between the two modes of initiation does provide insight into and confirmation of various aspects of addition polymerization. The most important application of photoinitiated polymerization is in providing a third experimental relationship among the kinetic parameters of the chain mechanism. We shall consider this in the next section. [Pg.371]

Reaction measurement studies also show that the chemistry is often not a simple one-step reaction process (37). There are usually several key intermediates, and the reaction is better thought of as a network of series and parallel steps. Kinetic parameters for each of the steps can be derived from the data. The appearance of these intermediates can add to the time required to achieve a desired level of total breakdown to the simple, thermodynamically stable products, eg, CO2, H2O, or N2. [Pg.57]

The constant may depend on process variables such as temperature, rate of agitation or circulation, presence of impurities, and other variables. If sufficient data are available, such quantities may be separated from the constant by adding more terms ia a power-law correlation. The term is specific to the Operating equipment and generally is not transferrable from one equipment scale to another. The system-specific constants i and j are obtainable from experimental data and may be used ia scaleup, although j may vary considerably with mixing conditions. Illustration of the use of data from a commercial crystallizer to obtain the kinetic parameters i, andy is available (61). [Pg.350]

Although magma density is a function of the kinetic parameters fP and G, it often can be measured iadependentiy. In such cases, it should be used as a constraint ia evaluating nucleation and growth rates from measured crystal size distributions (62), especially if the system of iaterest exhibits the characteristics of anomalous crystal growth. [Pg.350]

A pair of kinetic parameters, one for nucleation rate and another for growth rate, describe the crystal size distribution for a given set of crystallizer operating conditions. Variation ia one of the kinetic parameters without changing the other is not possible. Accordingly, the relationship between these parameters determines the abiUty to alter the characteristic properties (such as dominant size) of the distribution obtained from an MSMPR crystallizer (7). [Pg.350]

In Figure 2, a double-reciprocal plot is shown Figure 1 is a nonlinear plot of as a function of [S]. It can be seen how the least accurately measured data at low [S] make the deterrnination of the slope in the double-reciprocal plot difficult. The kinetic parameters obtained in this example by making linear regression on the double-reciprocal data ate =1.15 and = 0.25 (arbitrary units). The same kinetic parameters obtained by software using nonlinear regression are = 1.00 and = 0.20 (arbitrary units). [Pg.287]

Eig. 3. The effect on kinetic parameters of adding a competitive inhibitor. Reaction velocity as a function of [3] is shown. (—x —) Uninhibited reaction (---) inhibited reaction. As indicated on the figure, the parameter is increased by adding the competitive inhibitor both curves eventually reach the... [Pg.288]

C. N. Montreiul, S. D. WiUiams, and A. A. Adanc2yk, Modeling Current Generation Catalytic Converters Eaboratoy Experiments and Kinetic Parameter Optimisation—Steady State Kinetics, SAE 920096, Society of Automotive Engineers, Warrendale, Pa., 1992. [Pg.496]

A number of factors limit the accuracy with which parameters for the design of commercial equipment can be determined. The parameters may depend on transport properties for heat and mass transfer that have been determined under nonreacting conditions. Inevitably, subtle differences exist between large and small scale. Experimental uncertainty is also a factor, so that under good conditions with modern equipment kinetic parameters can never be determined more precisely than 5 to 10 percent (Hofmann, in de Lasa, Chemical Reactor Design and Technology, Martinus Nijhoff, 1986, p. 72). [Pg.707]

The use of PB modeling by practitioners has been hmited for two reasons. First, in many cases the kinetic parameters for the models have been difficult to predict and are veiy sensitive to operating conditions. Second, the PB equations are complex and difficult to solve. However, recent advances in understanding of granulation micromechanics, as well as better numerical solution techniques and faster computers, means that the use of PB models by practitioners should expand. [Pg.1903]

The kinetic parameters for NH3 decomposition at high pressures and temperature around 650 K are found to be... [Pg.137]

Using the same values of the kinetic parameters as in Type 1, and given C o = 0-1 mo 1/1, it is possible to solve Equation 6-155 with Equations 6-127 and 6-128 simultaneously to determine the fractional conversion X. A computer program was developed to determine the fractional conversion for different values of (-iz) and a temperature range of 260-500 K. Eigure 6-30 shows the reaction profile from the computer results. [Pg.527]

Using the kinetic parameters in Type 1 reaction at = 0.5, the optimum temperature progression is... [Pg.537]

The Michaelis-Menten Equation 11-15 is not well suited for estimation of the kinetic parameters and Reananging Equation 11-15 gives various options for plotting and estimating the parameters. [Pg.839]

Numerical estimation of the kinetic parameters (model indentification). [Pg.877]

Figure 12-11. Self-heat rate analysis. ARC data are shown along with a fitted model obtained by assuming the following kinetic parameters reaction order = 1, activation energy = 31.08 kcal/mol, and frequency factor = 2.31 El 2 min ... Figure 12-11. Self-heat rate analysis. ARC data are shown along with a fitted model obtained by assuming the following kinetic parameters reaction order = 1, activation energy = 31.08 kcal/mol, and frequency factor = 2.31 El 2 min ...

See other pages where Kinetics parameter is mentioned: [Pg.1917]    [Pg.1929]    [Pg.2821]    [Pg.2843]    [Pg.3068]    [Pg.625]    [Pg.544]    [Pg.317]    [Pg.286]    [Pg.334]    [Pg.58]    [Pg.368]    [Pg.512]    [Pg.334]    [Pg.335]    [Pg.527]    [Pg.345]    [Pg.12]    [Pg.287]    [Pg.287]    [Pg.2216]    [Pg.250]    [Pg.534]    [Pg.538]    [Pg.541]    [Pg.544]   
See also in sourсe #XX -- [ Pg.22 , Pg.91 , Pg.92 , Pg.93 , Pg.94 , Pg.95 , Pg.96 , Pg.97 , Pg.98 , Pg.99 , Pg.100 , Pg.101 , Pg.102 , Pg.103 , Pg.104 , Pg.105 ]

See also in sourсe #XX -- [ Pg.93 , Pg.94 ]

See also in sourсe #XX -- [ Pg.378 , Pg.379 ]

See also in sourсe #XX -- [ Pg.319 , Pg.322 , Pg.324 , Pg.326 , Pg.332 , Pg.335 ]




SEARCH



4-chlorophenol kinetic parameters

8-Glucosidases kinetic parameters

Alkanes kinetic parameters

Annealing kinetic parameters

Apparent kinetic parameters

Arrhenius parameters desorption kinetics

Arrhenius plots, kinetic parameters

Bromelain kinetic parameters

Butadiene polymerization kinetic parameters

Calculation of Kinetic Parameters and Polymer Formation Behavior

Calculation of kinetic parameters

Carboxylesterase kinetic parameters

Catalytic properties kinetic parameters

Classical methods, parameter estimation kinetic parameters, determination

Cleavage reactions formation kinetic parameters

Coats-Redfern equation kinetic parameters

Computational modeling problem Kinetic parameter

Computing Kinetic Parameters Using Non-Linear Approximation Tools

Correlation of kinetic parameters with analytical data

Creep kinetic parameters

Crystallization kinetic parameter evaluation

Cytochrome P450 kinetic parameters

Deactivation kinetics parameter estimation

Decarboxylation, kinetic parameters

Decomposition single crystals, kinetic parameters

Desorption kinetic parameters

Determination of Kinetic Parameters Using Data Linearization

Determination of Kinetic Parameters by Freeman and Carroll Method

Determination of Kinetic Parameters for Irreversible and Reversible One-Substrate Reactions

Determination of Kinetic Parameters for One-Substrate Reactions Under Inhibition

Determination of Thermodynamic and Kinetic Parameters from Calorimetric Data

Determination of kinetic parameters

Determination of the kinetic parameters

Determining Kinetic Parameters

Droplet kinetics parameters

Electrocatalysis kinetic parameters

Electrochemical polarization kinetic parameters

Electrode kinetics parameters

Electrodes kinetic parameters

Electron transfer kinetics, parameters

Electron transfer process kinetic parameters

Empirical Parameters of Solvent Polarity from Kinetic Measurements

Enzymatic synthesis kinetic parameters

Enzyme reaction kinetics kinetic parameters, evaluation

Enzymes kinetic parameters

Equilibrium and kinetic parameters

Equilibrium parameters Langmuir kinetic model

Equilibrium parameters complex kinetic models

Errors in the Determination of Kinetic Parameters

Estimating the Kinetic Parameters

Estimation of Kinetic Parameters for Non-Elementary Reactions by Linear Regression

Estimation of Kinetic Parameters for the Reaction between Reactants A and

Estimation of Kinetic Parameters from Experimental Data

Estimation of kinetic parameters

Ethanol oxidation kinetic parameter

Evaluation of Kinetic Parameters in Enzyme Reactions

Evaluation of Monod Kinetic Parameters

Evaluation of kinetic parameters

Example. Fitting kinetic parameters of a chemical reaction

Exchange kinetic parameters

Formate decarboxylation kinetic parameters

Glutaminase pH effects on kinetic parameters

Heterogeneous electron-transfer kinetic parameters

Hydrogen kinetic parameters

Hydrogen sulfide kinetics parameters

Hydrogenation kinetic parameters

Hydrolysis kinetics kinetic parameters, 306, Table

Identifiability problem, Kinetic parameter

Identification of Kinetic Parameters

Impedance techniques kinetic parameters from measurements

Incidence, 93 kinetic parameters

Isothermal micropore kinetic parameters

Kinetic Data Analysis and Evaluation of Model Parameters for Uniform (Ideal) Surfaces

Kinetic Parameter Calculations

Kinetic Parameters - Mechanism Construction

Kinetic Parameters Diffusion Controlled Conditions

Kinetic Parameters and Dynamics

Kinetic Parameters and Size Distribution of the Nano-Nucleus

Kinetic Parameters for HDS and HDM Reactions

Kinetic Parameters from

Kinetic Parameters from Fitting Langmuir-Hinshelwood Models

Kinetic Parameters of the Hydrogen Oxidation Reaction

Kinetic modeling parameter estimation

Kinetic modeling parameters

Kinetic parameter chemical

Kinetic parameter distribution

Kinetic parameter distribution Monte Carlo simulations

Kinetic parameter distribution applications

Kinetic parameter distribution covariates

Kinetic parameter distribution error model

Kinetic parameter distribution identifiability

Kinetic parameter distribution system model

Kinetic parameter distribution theory

Kinetic parameter error model

Kinetic parameter estimation

Kinetic parameter estimation light-scattering measurements

Kinetic parameter likelihood

Kinetic parameter parametric

Kinetic parameter system model

Kinetic parameters

Kinetic parameters

Kinetic parameters Arrhenius temperature dependence

Kinetic parameters cyclic voltammetry

Kinetic parameters density Tafel slope

Kinetic parameters derivatives

Kinetic parameters diffusion coefficient, double-layer

Kinetic parameters effective

Kinetic parameters faradaic rectification

Kinetic parameters for

Kinetic parameters for aquation

Kinetic parameters for electron transfer

Kinetic parameters for substitution

Kinetic parameters for water exchange

Kinetic parameters from calorimetry

Kinetic parameters from continuous

Kinetic parameters from continuous Kinetics, chemical

Kinetic parameters group complexes

Kinetic parameters hydrogen electrode process

Kinetic parameters of immobilized

Kinetic parameters of reaction

Kinetic parameters oxygen electrode process

Kinetic parameters reactors

Kinetic parameters rectification

Kinetic parameters reduction

Kinetic parameters selective catalytic

Kinetic parameters toward

Kinetic parameters various electrolytes

Kinetic parameters, Arrhenius

Kinetic parameters, changeability

Kinetic parameters, changeability deformation

Kinetic parameters, decomposition, single

Kinetic parameters, deltamethrin

Kinetic parameters, determination

Kinetic parameters, exothermic

Kinetic parameters, exothermic reaction

Kinetic parameters, from Arrhenius

Kinetic parameters, from Arrhenius plots

Kinetic parameters, glass transition

Kinetic parameters, glass transition polystyrene

Kinetic parameters, implications

Kinetic parameters, inhomogeneity

Kinetic parameters, inhomogeneity reactant

Kinetic parameters, irreversible reactions

Kinetic parameters, measurement

Kinetic parameters, migrating species

Kinetic parameters, polyamides

Kinetic parameters, procedural variables

Kinetic parameters, programmed

Kinetic parameters, programmed temperature

Kinetic parameters, reaction scheme

Kinetic parameters, reliability

Kinetic parameters, reversible reactions

Kinetic parameters, temperature

Kinetic parameters/laws

Kinetic rate parameters

Kinetics and Kinetic Parameters

Kinetics order parameter models

Kinetics parameters, determination

Kinetics, Mechanism, and Process Parameters

Leucine kinetic parameters

Links between kinetic parameters

Lumped kinetic parameters

Lumping kinetic parameters

Mass kinetic parameters estimation

Methanation kinetic parameters

Methanol kinetic parameters

Methodology to Determine Kinetic Parameters

Methyl acrylate polymerization kinetic parameters

Micelle kinetic parameters

Michaelis-Menten equation kinetic parameters

Michaelis-Menten kinetics parameters

Monod kinetic parameter determination

Myoglobin kinetic parameters

Optimal kinetic parameter estimates

Oxidation kinetic parameters

Oxidizing kinetic parameters

Oxygen reduction reaction kinetic parameters

Parameter Estimation of Kinetic Models with Bioreactors

Parameter analysis kinetic parameters, significance

Parameter kinetic models, data storage

Parameter space analysis, structural kinetic

Parameters for the kinetic model

Peak values kinetic parameters determined using

Polarization electrode kinetic parameters

Poly kinetic parameters

Polyesterification kinetic parameters

Polymers kinetic parameters

Potassium systems, kinetic parameters

Potential energy Diagram and Kinetic Parameters

Predictive kinetics rate parameters estimation

Process parameters kinetic modeling, reaction time

Process parameters kinetic simulations

Process parameters reaction product kinetics

Scavenging Kinetics and Diffusion Parameters

Selectivity kinetic parameter estimation

Self-exchange electron-transfer reaction kinetic parameters

Semiempirical Methods for Predicting Thermodynamic Properties and Kinetic Parameters

Shape of a Nucleus Is Related to Kinetic Parameters

Significance of Kinetic Parameters

Simple isothermal models, kinetic parameters

Single-crystal surface kinetic parameters

Solvent exchange kinetic parameters

Steady-state kinetic parameters

Structure sensitive kinetic parameter

Styrene polymerization kinetic parameters

Substitution reactions kinetic parameters

Surface kinetic parameters

Surface reaction kinetic parameters

Table of Information on Hydrolysis Rates and Kinetic Parameters

Tafel kinetic parameters determination

Temperature dependence kinetic parameters

Thermal degradation kinetics parameter estimation

Thermodynamic Parameters from Ion Exchange Kinetics

Thermodynamic/kinetic parameter

Toluene, hydrogenation kinetic parameters

Transferases kinetic parameters

Transient response curves kinetic parameters

Values of Kinetic Parameters

Vinyl acetate polymerization kinetic parameters

Voltammetry kinetic parameter

Water exchange kinetic parameters

© 2024 chempedia.info