Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Kinetic parameters/laws

A second requirement is that the rate law for the chemical reaction must be known for the period in which measurements are made. In addition, the rate law should allow the kinetic parameters of interest, such as rate constants and concentrations, to be easily estimated. For example, the rate law for a reaction that is first order in the concentration of the analyte. A, is expressed as... [Pg.624]

The constant may depend on process variables such as temperature, rate of agitation or circulation, presence of impurities, and other variables. If sufficient data are available, such quantities may be separated from the constant by adding more terms ia a power-law correlation. The term is specific to the Operating equipment and generally is not transferrable from one equipment scale to another. The system-specific constants i and j are obtainable from experimental data and may be used ia scaleup, although j may vary considerably with mixing conditions. Illustration of the use of data from a commercial crystallizer to obtain the kinetic parameters i, andy is available (61). [Pg.350]

The reactions were shown, in a representative number of cases, to follow second-order kinetics and to obey the Arrhenius law. The kinetic parameters are, of course, for the entire two-stage process. [Pg.333]

Thermodynamic and Kinetic Parameters for Reversible Polymerization (Oosawa s Law) 46... [Pg.43]

The kinetic parameters are listed in Table 1. The linearity of lnAr l/r plot is revealed by the correlation coefficient. For all reactions but the deactivation, the rate constants follow the Arrhenius law satisfactorily, implying catalyst deactivation may involve more than one elementary steps. [Pg.335]

A reason for using microkinetics in heterogeneous catalysis is to have comprehensive kinetics and a transparent reaction mechanism that wonld be useful for re or design or catalyst development. Furthermore, in the long run, the exparimental effort to develop a microkinetics scheme can be less than that for a Langmuir-Hinshelwood (LH) or powa--law scheme because of the more fundamental nature of the reaction kinetics parameters. [Pg.677]

The SCR catalyst is considerably more complex than, for example, the metal catalysts we discussed earlier. Also, it is very difficult to perform surface science studies on these oxide surfaces. The nature of the active sites in the SCR catalyst has been probed by temperature-programmed desorption of NO and NH3 and by in situ infrared studies. This has led to a set of kinetic parameters (Tab. 10.7) that can describe NO conversion and NH3 slip (Fig. 10.16). The model gives a good fit to the experimental data over a wide range, is based on the physical reality of the SCR catalyst and its interactions with the reacting gases and is, therefore, preferable to a simple power rate law in which catalysis happens in a black box . Nevertheless, several questions remain unanswered, such as what are the elementary steps and what do the active site looks like on the atomic scale ... [Pg.399]

The Arrhenius plots for both sets of kinetic parameters together with experimental points are shown in Fig. 5.4 -32. Experimental points scatter uniformly on both sides of the straight lines indicating that the power-law model with the evaluated rate constant can be satisfactorily used to describe the kinetic experiments under consideration. [Pg.318]

The basic biofilm model149,150 idealizes a biofilm as a homogeneous matrix of bacteria and the extracellular polymers that bind the bacteria together and to the surface. A Monod equation describes substrate use molecular diffusion within the biofilm is described by Fick s second law and mass transfer from the solution to the biofilm surface is modeled with a solute-diffusion layer. Six kinetic parameters (several of which can be estimated from theoretical considerations and others of which must be derived empirically) and the biofilm thickness must be known to calculate the movement of substrate into the biofilm. [Pg.833]

Semiquantitative analysis. In a preliminary investigation, the analysis using Eq. (1) of space relaxation data, obtained by testing under shift conditions the catalyst at high oxidation state by a CO, H O, N. mixture at constant PH 0 = °>40 bar and various p and at different temperature leve s between 180°C and 260 C, resulted in the following kinetic parameters for the power law rate r = k-p Q ... [Pg.291]

If there is more than one reactant, as in Examples 3-3 or 3-5, with a rate law given by (-rA) = kAcaAcl, the procedure to determine (-rA) is similar to that for one reactant, and the kinetics parameters are obtained by use of equation 3.4-4, the linearized form of the rate law. [Pg.54]

Show that the results conform to the Michaelis-Menten rate law, and determine the values of the kinetics parameters Km, and kr. [Pg.277]

FIGURE 1.17. Cyclic voltammetry of slow electron transfer involving immobilized reactants and obeying a Butler Volmer law. Normalized current-potential curves as a function of the kinetic parameter (the number on each curve is the value of log A ) for a. — 0.5. Insert irreversible dimensionless response (applies whatever the value of a). [Pg.46]

The information thus obtained on the redox properties of the radicals is a global reduction potential in which the thermodynamic and kinetic parameters are intermingled [equation (2.39)]. It is possible to separate these parameters if it is assumed that the kinetics of electron transfer to the radical obeys the MHL law in its approximate quadratic version (see Section 1.4.2) ... [Pg.170]

As compared to the Nemstian case, the plateau is the same but the wave is shifted toward more negative potentials, the more so the slower the electrode electron transfer. An illustration is given in Figure 4.13 for a value of the kinetic parameter where the catalytic plateau is under mixed kinetic control, in between catalytic reaction and substrate diffusion control. For the kjet(E) function, rather than the classical Butler-Volmer law [equation (1.26)], we have chosen the nonlinear MHL law [equation (1.37)]. [Pg.273]

FIGURE 4.1 3. a RDEV response of a monolayer catalytic coating for the reaction scheme in Figure 4.10 with a slow P/Q electron transfer. Kinetic parameter [equation (4.5)] kr°8/DA = 5. The same electrode transfer MHL law as in Figure 1.18. Dotted line Nemstian limiting case. Solid lines from left to right, e (5r0DAC = 1, 0.1, 0.01. h Derivation of the catalytic rate constant, c Derivation of the kinetic law. [Pg.274]

Boreskov assumed the power law dependence for reaction rate, which is mathematically incorrect. Thus, strictly speaking, he did not prove Equations (13) and (14). Authors performed the analysis of the model corresponding to the single-route reaction mechanism with the rate-limiting step and proved these relations rigorously (see Lazman and Yablonskii, 1988 Lazman and Yablonskii, 1991). Mathematically, expression (12) is the first term of infinite power series by powers kinetic parameters of rate-limiting step. [Pg.56]

The rate law and the reaction order can often be used to show that a reaction cannot be an elementary reaction since, in the latter case, the exponents must be integers and the overall reaction order must be < 3. However, it should be noted that these kinetic parameters cannot be used to confirm that a particular reaction is elementary they can only indicate that the kinetic data do not rule out the possibility that the reaction is elementary. [Pg.132]

The Fc-HRP activity was quantified using two different substrates of HRP, i.e., ABTS and water-soluble ferrocene derivatives. Rate laws and kinetic parameters for native HRP and Fc-HRP have been compared. The native and the reconstituted enzymes catalyze the oxidation of ABTS in accordance with the Michaelis-Menten kinetics the inverse rate versus [ABTS]-1 plots are linear and the values of the maximum rates Vm and the Michaelis constant Km are summarized... [Pg.233]

A global multiresponse non-linear regression was performed to fit Eq. (57) to all the runs with both 2% and 6% v/v 02 feed content to obtain the estimates of the kinetic parameters (Nova et al., 2006a). Figure 37 (solid lines) illustrates the adequacy of the global fit of the TRM runs with 2 and 6% 02 the MR rate law can evidently capture the complex maxima-minima NO and N2 traces (symbols) at low T at both NH3 startup, that a simple Eley-Rideal (ER), approach based on the equation... [Pg.176]

In general, the use of Langmuir-Hinshelwood-Hougen-Watson (LHHW)-type of rate equation for representing the hydrogenation kinetics of industrial feedstocks is complicated, and there are too many coefficients that are difficult to determine. Therefore, simple power law models have been used by most researchers to fit kinetic data and to obtain kinetic parameters. [Pg.441]

In electrode kinetics, interface reactions have been extensively modeled by electrochemists [K.J. Vetter (1967)]. Adsorption, chemisorption, dissociation, electron transfer, and tunneling may all be rate determining steps. At crystal/crystal interfaces, one expects the kinetic parameters of these steps to depend on the energy levels of the electrons (Fig. 7-4) and the particular conformation of the interface, and thus on the crystal s relative orientation. It follows then that a polycrystalline, that is, a (structurally) inhomogeneous thin film, cannot be characterized by a single rate law. [Pg.172]

To avoid difficulties related to the growth of pressure in a sealed vessels as well as temperature measurement, the esterification reaction of acetic acid with propanol was carried out in an open vessel under reflux conditions. It was found that ester concentrations during the course of the reaction were comparable under both conventional and microwave conditions [20]. In a similar reaction (i.e., the esterification of trimethylben-zoic acid with propanol), the kinetic parameters of the reaction under the Arrhenius law were estimated for conventional conditions. Then ester concentrations were calculated theoretically and compared with the results obtained for the reaction under microwave conditions. It was found that the theoretical values correlated well with the experimental results so microwave irradiation did not influence the rate of the reaction [21]. [Pg.15]

In principle, any property of a reacting system which changes as the reaction proceeds may be monitored in order to accumulate the experimental data which lead to determination of the various kinetics parameters (rate law, rate constants, kinetic isotope effects, etc.). In practice, some methods are much more widely used than others, and UV-vis spectropho-tometric techniques are amongst these. Often, it is sufficient simply to record continuously the absorbance at a fixed wavelength of a reaction mixture in a thermostatted cuvette the required instrumentation is inexpensive and only a basic level of experimental skill is required. In contrast, instrumentation required to study very fast reactions spectrophotometrically is demanding both of resources and experimental skill, and likely to remain the preserve of relatively few dedicated expert users. [Pg.8]

The aim of the multivariate evaluation methods is to fit a reaction model to the measured reaction spectrum on the basis of the Beer-Lambert law and thus identify the kinetic parameters of the model. The general task can be described by the non-linear least-squares optimisation described in Equation 8.20 ... [Pg.210]

In the numerical model calibration phase, the unknown parameters are those contained in Fick s law and in the Butler-Volmer equation, i.e. the diffusion coefficients representing the porous micro-structural characteristics (e and r), and the electrochemical kinetics parameter (A and Ea). It should be noted that the calibration pro-... [Pg.103]


See other pages where Kinetic parameters/laws is mentioned: [Pg.625]    [Pg.37]    [Pg.51]    [Pg.75]    [Pg.47]    [Pg.108]    [Pg.51]    [Pg.207]    [Pg.274]    [Pg.164]    [Pg.180]    [Pg.205]    [Pg.210]    [Pg.193]    [Pg.105]    [Pg.1]    [Pg.86]    [Pg.464]    [Pg.146]    [Pg.902]    [Pg.151]    [Pg.328]    [Pg.199]   
See also in sourсe #XX -- [ Pg.99 , Pg.100 ]




SEARCH



Kinetic laws

Kinetic parameters

Kinetics parameters

© 2024 chempedia.info