Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Kinetics and Kinetic Parameters

Just as the surface and apparent kinetics are related through the adsorption isotherm, the surface or true activation energy and the apparent activation energy are related through the heat of adsorption. The apparent rate constant k in these equations contains two temperature-dependent quantities, the true rate constant k and the parameter b. Thus... [Pg.726]

The applications of this simple measure of surface adsorbate coverage have been quite widespread and diverse. It has been possible, for example, to measure adsorption isothemis in many systems. From these measurements, one may obtain important infomiation such as the adsorption free energy, A G° = -RTln(K ) [21]. One can also monitor tire kinetics of adsorption and desorption to obtain rates. In conjunction with temperature-dependent data, one may frirther infer activation energies and pre-exponential factors [73, 74]. Knowledge of such kinetic parameters is useful for teclmological applications, such as semiconductor growth and synthesis of chemical compounds [75]. Second-order nonlinear optics may also play a role in the investigation of physical kinetics, such as the rates and mechanisms of transport processes across interfaces [76]. [Pg.1289]

TPD Temperature programmed desorption After pre-adsorption of gases on a surface, the desorption and/or reaction products are measured while the temperature Increases linearly with time. Coverages, kinetic parameters, reaction mechanism... [Pg.1852]

Suffice it to say that a dynamic model of this system was proposed that allowed the estimation of kinetic parameters and gave reasonable agreement with the experimental observations in the bioreactor [22]. [Pg.562]

Using the coordinates of special geometries, minima, and saddle points, together with the nearby values of potential energy, you can calculate spectroscopic properties and macroscopic therm ody-riatriic and kinetic parameters, sncfi as enthalpies, entropies, and thermal rate constants. HyperChem can provide the geometries and energy values for many of these ealeulatiori s. [Pg.32]

Kinetic data are available for the range 7S S 98 i % sulphuric acid, and Arrhenius parameters at several acidities. The relative rate was obtained as before. [Pg.179]

A second requirement is that the rate law for the chemical reaction must be known for the period in which measurements are made. In addition, the rate law should allow the kinetic parameters of interest, such as rate constants and concentrations, to be easily estimated. For example, the rate law for a reaction that is first order in the concentration of the analyte. A, is expressed as... [Pg.624]

Photoinitiation is not as important as thermal initiation in the overall picture of free-radical chain-growth polymerization. The foregoing discussion reveals, however, that the contrast between the two modes of initiation does provide insight into and confirmation of various aspects of addition polymerization. The most important application of photoinitiated polymerization is in providing a third experimental relationship among the kinetic parameters of the chain mechanism. We shall consider this in the next section. [Pg.371]

Reaction measurement studies also show that the chemistry is often not a simple one-step reaction process (37). There are usually several key intermediates, and the reaction is better thought of as a network of series and parallel steps. Kinetic parameters for each of the steps can be derived from the data. The appearance of these intermediates can add to the time required to achieve a desired level of total breakdown to the simple, thermodynamically stable products, eg, CO2, H2O, or N2. [Pg.57]

The constant may depend on process variables such as temperature, rate of agitation or circulation, presence of impurities, and other variables. If sufficient data are available, such quantities may be separated from the constant by adding more terms ia a power-law correlation. The term is specific to the Operating equipment and generally is not transferrable from one equipment scale to another. The system-specific constants i and j are obtainable from experimental data and may be used ia scaleup, although j may vary considerably with mixing conditions. Illustration of the use of data from a commercial crystallizer to obtain the kinetic parameters i, andy is available (61). [Pg.350]

Although magma density is a function of the kinetic parameters fP and G, it often can be measured iadependentiy. In such cases, it should be used as a constraint ia evaluating nucleation and growth rates from measured crystal size distributions (62), especially if the system of iaterest exhibits the characteristics of anomalous crystal growth. [Pg.350]

A pair of kinetic parameters, one for nucleation rate and another for growth rate, describe the crystal size distribution for a given set of crystallizer operating conditions. Variation ia one of the kinetic parameters without changing the other is not possible. Accordingly, the relationship between these parameters determines the abiUty to alter the characteristic properties (such as dominant size) of the distribution obtained from an MSMPR crystallizer (7). [Pg.350]

In Figure 2, a double-reciprocal plot is shown Figure 1 is a nonlinear plot of as a function of [S]. It can be seen how the least accurately measured data at low [S] make the deterrnination of the slope in the double-reciprocal plot difficult. The kinetic parameters obtained in this example by making linear regression on the double-reciprocal data ate =1.15 and = 0.25 (arbitrary units). The same kinetic parameters obtained by software using nonlinear regression are = 1.00 and = 0.20 (arbitrary units). [Pg.287]

C. N. Montreiul, S. D. WiUiams, and A. A. Adanc2yk, Modeling Current Generation Catalytic Converters Eaboratoy Experiments and Kinetic Parameter Optimisation—Steady State Kinetics, SAE 920096, Society of Automotive Engineers, Warrendale, Pa., 1992. [Pg.496]

A large programme utilizing temperature-jump relaxation methods for the study of tautomerism in aqueous solution has led the Dubois group to determine the kinetic and thermodynamic parameters of the equilibrium (130a) (130b) (78T2259). The tautomeric... [Pg.212]

The influence of temperature, acidity and substituents on hydrolysis rate was investigated with simple alkyldiaziridines (62CB1759). The reaction follows first order kinetics. Rate constants and activation parameters are included in Table 2. [Pg.216]

A number of factors limit the accuracy with which parameters for the design of commercial equipment can be determined. The parameters may depend on transport properties for heat and mass transfer that have been determined under nonreacting conditions. Inevitably, subtle differences exist between large and small scale. Experimental uncertainty is also a factor, so that under good conditions with modern equipment kinetic parameters can never be determined more precisely than 5 to 10 percent (Hofmann, in de Lasa, Chemical Reactor Design and Technology, Martinus Nijhoff, 1986, p. 72). [Pg.707]

The use of PB modeling by practitioners has been hmited for two reasons. First, in many cases the kinetic parameters for the models have been difficult to predict and are veiy sensitive to operating conditions. Second, the PB equations are complex and difficult to solve. However, recent advances in understanding of granulation micromechanics, as well as better numerical solution techniques and faster computers, means that the use of PB models by practitioners should expand. [Pg.1903]

The second classification is the physical model. Examples are the rigorous modiiles found in chemical-process simulators. In sequential modular simulators, distillation and kinetic reactors are two important examples. Compared to relational models, physical models purport to represent the ac tual material, energy, equilibrium, and rate processes present in the unit. They rarely, however, include any equipment constraints as part of the model. Despite their complexity, adjustable parameters oearing some relation to theoiy (e.g., tray efficiency) are required such that the output is properly related to the input and specifications. These modds provide more accurate predictions of output based on input and specifications. However, the interactions between the model parameters and database parameters compromise the relationships between input and output. The nonlinearities of equipment performance are not included and, consequently, significant extrapolations result in large errors. Despite their greater complexity, they should be considered to be approximate as well. [Pg.2555]

Verneuil et al. (Verneuil, V.S., P. Yan, and F. Madron, Banish Bad Plant Data, Chemical Engineering Progress, October 1992, 45-51) emphasize the importance of proper model development. Systematic errors result not only from the measurements but also from the model used to analyze the measurements. Advanced methods of measurement processing will not substitute for accurate measurements. If highly nonlinear models (e.g., Cropley s kinetic model or typical distillation models) are used to analyze unit measurements and estimate parameters, the Hkelihood for arriving at erroneous models increases. Consequently, resultant models should be treated as approximations. [Pg.2564]

The kinetic parameters for NH3 decomposition at high pressures and temperature around 650 K are found to be... [Pg.137]

Using the same values of the kinetic parameters as in Type 1, and given C o = 0-1 mo 1/1, it is possible to solve Equation 6-155 with Equations 6-127 and 6-128 simultaneously to determine the fractional conversion X. A computer program was developed to determine the fractional conversion for different values of (-iz) and a temperature range of 260-500 K. Eigure 6-30 shows the reaction profile from the computer results. [Pg.527]

The Michaelis-Menten Equation 11-15 is not well suited for estimation of the kinetic parameters and Reananging Equation 11-15 gives various options for plotting and estimating the parameters. [Pg.839]

Figure 12-11. Self-heat rate analysis. ARC data are shown along with a fitted model obtained by assuming the following kinetic parameters reaction order = 1, activation energy = 31.08 kcal/mol, and frequency factor = 2.31 El 2 min ... Figure 12-11. Self-heat rate analysis. ARC data are shown along with a fitted model obtained by assuming the following kinetic parameters reaction order = 1, activation energy = 31.08 kcal/mol, and frequency factor = 2.31 El 2 min ...
Witkowski, W.R., Miller, S.M. and Rawlings, J.B., 1990. Light scattering measurements to estimate kinetic parameters of crystallization. In Crystallization as a separation process, ACS Symposium Series, 438, 102. [Pg.326]


See other pages where Kinetics and Kinetic Parameters is mentioned: [Pg.371]    [Pg.373]    [Pg.375]    [Pg.377]    [Pg.379]    [Pg.383]    [Pg.385]    [Pg.389]    [Pg.393]    [Pg.395]    [Pg.397]    [Pg.399]    [Pg.401]    [Pg.405]    [Pg.407]    [Pg.409]    [Pg.411]    [Pg.413]    [Pg.415]    [Pg.417]    [Pg.421]    [Pg.423]    [Pg.425]    [Pg.1917]    [Pg.1929]    [Pg.2821]    [Pg.2843]    [Pg.3068]    [Pg.179]    [Pg.179]    [Pg.625]    [Pg.317]    [Pg.286]    [Pg.334]    [Pg.58]    [Pg.368]    [Pg.512]    [Pg.334]    [Pg.335]    [Pg.527]    [Pg.345]    [Pg.12]    [Pg.287]    [Pg.287]    [Pg.109]    [Pg.2216]    [Pg.250]   


SEARCH



Kinetic parameters

Kinetics parameters

© 2024 chempedia.info