Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Kinetic parameters reduction

A pilot scale UASB reactor was simulated by the dispersed plug flow model with Monod kinetic parameters for the hypothetical influent composition for the three VPA ccmiponents. As a result, the COD removal efflciency for the propionic acid is smallest because its decomposition rate is cptite slow compared with other substrate components their COD removal eflSciencies are in order as, acetic acid 0.765 > butyric acid 0.705 > propionic acid 0.138. And the estimated value of the total COD removal efficiency is 0.561. This means that flie inclusion of large amount of propionic acid will lead to a significant reduction in the total VFA removal efficiency. [Pg.664]

Samec Z, Weber J (1973) The influence of chemisorbed sulfur on the kinetic parameters of the reduction of Fe " ions on a platinum electrode on the basis of the Marcus theory of electron transfer. J Electroanal Chem Interfacial Electrochem 44 229-238... [Pg.74]

KINETIC PARAMETERS IN THE HALIDE-CATALYSED REDUCTION OF CotNHslsL" ... [Pg.212]

Kinetic parameters for NOx reduction are summarized in Table 1. It is obvious that the addition of Ir to ln/H-ZSM-5 led to the decrease in reaction orders with respect to NO, CH4, and O2 in the NO-CH4-O2 reaction. The decrease in the order for NO can explain that lr/ln/H-ZSM-5 was effective for the reduction of NO at low concentrations. On the contrary, the reaction orders with respect to NO2, CH4, and O2 in the NO2-CH4-O2 reaction were not significantly changed by the addition of Ir. The retarding effect of CH4... [Pg.673]

Wang JX, Markovic NM, Adzic RR. 2004. Kinetic analysis of oxygen reduction on Pt(ll 1) in acid solutions Intrinsic kinetic parameters and anion adsorption effects. J Phys Chem B 108 ... [Pg.31]

Finally the kinetic data are compared to the microstructures of the E-V copolymers obtained by (n-Bu)3SnH reduction of PVC to test the suitability of DCP and TCH as model compounds for PVC reduction. This is achieved by computer modeling the reduction of PVC to E-V copolymers with the aid of the kinetic parameters obtained from the study of DCP and TCH reduction, and then comparing the observed and modeled E-V microstructures. [Pg.357]

Finally, a group from General Motors has explored the mechanistic importance of the N20 + CO reaction as an intermediate step during the reduction of NO by CO on noble metal exhaust catalysts [87,88]. Quasi-linearization of the non-linear NO + CO reaction system by identifying a critical kinetic parameter revealed that, indeed, the rate of the N20 + CO conversion as an intermediate step in the overall NO + CO conversion can be two to three orders of magnitude faster than the isolated N20 + CO reaction. This suggests that the observed suppression of N20 production at higher temperatures may be due to its fast reaction with adsorbed CO once produced, and that, contrary to the accepted wisdom, the formation of N20 and its subsequent reaction with CO can make a major contribution to the kinetics of the reduction of NO by CO in three-way catalytic converters. The validity of the theoretical results was verified by both... [Pg.89]

Fig. 3. (a) Typical galvanostatic limiting-current curve for copper deposition at a copper disk in acidified CuS04 solution. The circles indicate the experimental curve. The solid curves were calculated using kinetic parameters as indicated, (b) Typical galvanostatic limiting current curve for ferricyanide reduction at a nickel electrode in equimolar ferri ferrocyanide solution with excess NaOH. [From Selman (S8).]... [Pg.226]

The reduction of zinc ions at d.m.e. has widely been studied and the reaction has been reported to be quasi-reversible.94 Van Der Pol and co-workers54 studied this reaction by the faradaic rectification polarographic technique using high-frequency modulated signals. The kinetic parameters have been evaluated by the... [Pg.233]

Polarographic studies of organic compounds are very complicated. Many of the compounds behave as surfactants, most of them exhibit multiple-electron charge transfer, and very few are soluble in water. The measurement of the capacitance of the double layer, the cell resistance, and the impedance at the electrode/solution interface presents many difficulties. To examine the versatility of the FR polarographic technique, a few simple water-soluble compounds have been chosen for the study. The results obtained are somewhat exciting because the FR polarographic studies not only help in the elucidation of the mechanism of the reaction in different stages but also enable the determination of kinetic parameters for each step of reduction. [Pg.240]

Use of a N. globerula R-9 strain was demonstrated for desulfurization of straight run diesel oils. Sulfur reduction from 1807 to 741 mg/dm3 was reported at a desulfurization rate of 5.1 mmol/Kgdcw/h. The desulfurization of model oils containing DBT and 4,6 dimethyl DBT was studied and Michaelis-Menten kinetic parameters were reported. [Pg.140]

Kinetic Parameters of Reduction of Peroxides by Ketyl and Alkyl Radicals [68]... [Pg.283]

The reduction of 7,8-dihydrofolate (H2F) to 5,6,7,8-tetrahydrofolate (H4F) has been analyzed extensively14 26-30 and a kinetic scheme for E. Coli DHFR was proposed in which the steady-state kinetic parameters as well as the full time course kinetics under a variety of substrate concentrations and pHs were determined. From these studies, the pKa of Asp27 is 6.5 in the ternary complex between the enzyme, the cofactor NADPH and the substrate dihydrofolate. The second observation is that, contrary to earlier results,27 the rate determining step involves dissociation of the product from the enzyme, rather than hydride ion transfer from the cofactor to the substrate. [Pg.254]

When, as it is assumed here, the B —> C reaction is the rate-determining step, the dimensionless rate parameter, 2, is the same as in the ECE case. As 2 increases, the wave loses its reversibility while the electron stoichiometry passes from 1 to 2, as in the ECE case. Unlike the latter, there is no trace crossing upon scan reversible. This is related to the fact that now only the reduction of A contributes to the current. C has indeed disappeared by means of its reaction with B before being able to reach back to the electrode surface. The characteristic equations, their dimensionless expression, and their resolution are detailed in Section 6.2.1. The dimensionless peak current, tjj, thus varies with the kinetic parameter, 2, from 0.446, the value characterizing the reversible uptake of one electron, to 2 x 0.496 = 0.992, the value characterizing the irreversible exchange of two electrons (Figure 2.11a). [Pg.100]

The information thus obtained on the redox properties of the radicals is a global reduction potential in which the thermodynamic and kinetic parameters are intermingled [equation (2.39)]. It is possible to separate these parameters if it is assumed that the kinetics of electron transfer to the radical obeys the MHL law in its approximate quadratic version (see Section 1.4.2) ... [Pg.170]

The obvious advantage is that the steady-state solution of an S-system model is accessible analytically. However, while the drastic reduction of complexity can be formally justified by a (logarithmic) expansion of the rate equation, it forsakes the interpretability of the involved parameters. The utilization of basic biochemical interrelations, such as an interpretation of fluxes in terms of a nullspace matrix is no longer possible. Rather, an incorporation of flux-balance constraints would result in complicated and unintuitive dependencies among the kinetic parameters. Furthermore, it must be emphasized that an S-system model does not necessarily result in a reduced number of reactions. Quite on the contrary, the number of reactions r = 2m usually exceeds the value found in typical metabolic networks. [Pg.183]

In a bulk silica matrix that differs from the silica nanomatrix regarding only the matrix size but has a similar network structure of silica, several kinetic parameters have been studied and the results demonstrated a diffusion controlled mechanism for penetration of other species into the silica matrix [89-93]. When the silica is used as a catalyst matrix in the liquid phase, slow diffusion of reactants to the catalytic sites within the silica rendered the reaction diffusion controlled [90]. It was also reported that the reduction rate of encapsulated ferricytochrome by sodium dithionite decreased in a bulk silica matrix by an order of magnitude compared to its original reaction rate in a homogeneous solution [89], In gas-phase reactions in the silica matrix, diffusion limitations were observed occasionally [93],... [Pg.245]

Ashby and Yu have studied the kinetics of reduction of benzophenone with TIBA in ether and showed that the overall kinetic rate expression is second order, first order in TIBA and first order in ketone (151). The observed activation parameters were AG - 18.8 kcal/mol AH = 15.8 kcal/mol and AS = - 10.1 e.u. The negative entropy of activation is consistent with a cyclic transition state for the rate-determining hydride-transfer step. A Hammett study gave a value of p = 0.362, supporting nucleophilic attack by the aluminum alkyl on the carbonyl group in the rate-determining step. [Pg.291]

Thus, electrochemical data involving both thermodynamic and kinetic parameters of hydrocarbons are available for only olefinic and aromatic jr-systems. The reduction of aromatics, in particular, had already attracted much interest in the late fifties and early sixties. The correlation between the reduction potentials and molecular-orbital (MO) energies of a series of aromatic hydrocarbons was one of the first successful applications of the Hiickel molecular orbital (HMO) theory, and allowed the development of a coherent picture of cathodic reduction [1], The early research on this subject has been reviewed several times [2-4],... [Pg.95]

The pattern for outer-sphere oxidation by Co(NH3)5 compared with Co(en)j+ (usually it is —10 times slower) towards inorganic reductants can be used to support an estimate of the proportion of electron transfer (Marcus-dependent) and charge transfer which Ru(bpy) + displays towards these oxidants (45 and 11%, respectively). Sec. 2.2.1(b). Finally, Eqn. 5.35 can be used to determine K 2 for a reaction in which the other kinetic parameters are known. The value of A, 2 can be used, in turn, to estimate the oxidation potential of one couple, which is normally inaccessible. Thus the potentials of the o-, m- and /7-benzene diol radicals 1T2A4 were determined from kinetic data for the oxidation of the diols (H2A) by Fe(phen) + (5.45) ... [Pg.269]

The variation of the peak current with the electrode kinetic parameter k and chemical kinetic parameter e is shown in Fig. 2.31. When the quasireversible electrode reaction is fast (curves 1 and 2 in Fig. 2.31) the dependence is similar as for the reversible case and characterized by a pronounced minimum If the electrode reaction is rather slow (curves 3-5), the dependence A fJ, vs. log( ) transforms into a sigmoidal curve. Although the backward chemical reaction is sufficiently fast to re-supply the electroactive material on the time scale of the reverse (reduction) potential pulses, the reuse of the electroactive form is prevented due to the very low kinetics of the electrode reaction. This situation corresponds to the lower plateau of curves 3-5 in Fig. 2.31. [Pg.48]

Two experimental systems have been used to illustrate the theory for two-step surface electrode mechanism. O Dea et al. [90] studied the reduction of Dimethyl Yellow (4-(dimethylamino)azobenzene) adsorbed on a mercury electrode using the theory for two-step surface process in which the second redox step is totally irreversible. The thermodynamic and kinetic parameters have been derived from a pool of 11 experimental voltammograms with the aid of COOL algorithm for nonlinear least-squares analysis. In Britton-Robinson buffer at pH 6.0 and for a surface concentration of 1.73 X 10 molcm, the parameters of the two-step reduction of Dimethyl Yellow are iff = —0.397 0.001 V vs. SCE, Oc,i = 0.43 0.02, A sur,i =... [Pg.95]

The theory for the reaction of an adsorbed redox couple (2.146) has been exemplified by experiments with methylene blue [92], and azobenzene [79], Both redox couples, methylene blue/leucomethylene, and azobenzene/hydrazobenzene adsorb strongly on the mercury electrode surface. The reduction of methlylene blue involves a very fast two-step redox reaction with a standard rate constants of 3000 s and 6000 s for the first and second step, respectively. Thus, for / < 50 Hz, the kinetic parameter for the first electron transfer is log(m) > 1.8, implying that the reaction appears reversible. Therefore, regardless of the adsorptive accumulation, the net response of methylene blue is a small peak, the peak current of which depends linearly on /J. Increasing the frequency above 50 Hz, the electrochemical... [Pg.109]

Therefore, a complete description of the redox properties of sulfur and polysulfides in classical organic solvents has been obtained on the following basis only 8g and the radical anions 8 are reducible and only the dianions 8 and 8g are oxidable. The electrochemical process has been validated in DMF by comparing simulations and the experimental data in a wide range of temperatures (233 to 313 K) and scan rates (0.005 to 2.0 Vs ). It can be reasonably extended to other organic solvents. Thermodynamic and kinetic parameters have been discussed in Ref. 60. It must be noted that Paris et al. [58] describe the reduction of sulfur... [Pg.263]

Dropping indium and thallium amalgam electrodes [41] were used to determine kinetic parameters of Zn(II) reduction as a function of the amalgam composition. The formal potentials were shifted to more negative values with increasing thallium and indium amalgam concentrations. [Pg.731]

The electrochemical properties of Cd(II) complexes with inorganic ligand presented in early papers were discussed by Hampson and Latham [72]. Later, electrochemical investigations of cadmium complexes were oriented on the mechanism of complex formation, determination of stoichiometry and stability constants, mechanisms of reduction on the electrodes, and evaluation of kinetic parameters of these processes. The influence of ligands and solvents on stability and kinetic parameters of electroreduction was also studied. [Pg.775]

The reduction of the Cd(2,2,2) + complex on mercury electrodes was studied in aqueous solutions free and saturated with -pentanol and n-octanol [86] and also in acetonitrile [87]. The corresponding reduction mechanism was established and the kinetic parameters were calculated. [Pg.776]


See other pages where Kinetic parameters reduction is mentioned: [Pg.153]    [Pg.153]    [Pg.570]    [Pg.229]    [Pg.232]    [Pg.234]    [Pg.239]    [Pg.339]    [Pg.110]    [Pg.699]    [Pg.153]    [Pg.174]    [Pg.151]    [Pg.82]    [Pg.22]    [Pg.66]    [Pg.109]    [Pg.470]    [Pg.728]    [Pg.808]   
See also in sourсe #XX -- [ Pg.399 ]




SEARCH



Kinetic parameters

Kinetic reduction

Kinetics parameters

Oxygen reduction reaction kinetic parameters

Parameter reduction

© 2024 chempedia.info