Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Kinetic parameters, reliability

Lunazzi et al. [84JCS(P2)1025] reported the first reliable data on the behavior of 1,2,3-triazole 20 in solution (Scheme 21). Using NMR at 300 MHz and lowering the temperature to -98°C they determined not only the equilibrium constant but all the thermodynamic and kinetic parameters = 0.55 kcal mol (CD2CI2) and 1.60 kcal moU (toluene-ds),... [Pg.45]

Most often, the primary experimental desorption data [[mainly the P(t) or P(T) function] represent, after due corrections, the temperature dependence of the desorption rate, —dnjdt = Nt vs T. The resulting curves exhibit peaks and their most reliable point is the maximum at the temperature Tm, corresponding to the maximum desorption rate Nm. Its location on the temperature scale under various conditions is essential for estimating the kinetic parameters of the desorption process. [Pg.367]

Methods for measurement of kp have been reviewed by Stickler,340 41 van Herk Vl and more recently by Beuermann and Buback.343 A largely non critical summary of values of kp and k, obtained by various methods appears in the Polymer Handbook.344 Literature values of kp for a given monomer may span two or more orders of magnitude. The data and methods of measurement have heen critically assessed by IUPAC working parties"45"01 and reliable values for most common monomers are now available. 43 The wide variation in values of kp (and k,) obtained from various studies docs not reflect experimental error but differences in data interpretation and the dependence of kinetic parameters on chain length and polymerization conditions. [Pg.216]

Thermal analysis has been widely and usefully applied in the solution of technical problems concerned with the commercial exploitation of natural dolomite including, for example, the composition of material in different deposits, the influence of impurities on calcination temperatures, etc. This approach is not, however, suitable for the reliable determination of kinetic parameters for a reversible reaction (Chap. 3, Sect. 6). [Pg.242]

Increased computational resources allow the widespread application of fundamental kinetic models. Relumped single-event microkinetics constitute a subtle methodology matching present day s analytical techniques with the computational resources. The singleevent kinetic parameters are feedstock invariant. Current efforts are aimed at mapping catal) t properties such as acidity and shape selectivity. The use of fundamental kinetic models increases the reliability of extrapolations from laboratory or pilot plant data to industrial reactor simulation. [Pg.53]

In this article, a dynamic reaction kinetics for propylene epoxidation on Au/Ti02 is presented. Au/Ti02 catalyst is prepared and kinetics experiments are carried out in a tube reactor. Kinetic parameters are determined by fitting the experiments under different temperatures, and the reliability of the proposed kinetics is verified by experiments with different catalyst loading. [Pg.334]

For a reliable calculation of coefficient a from the potential dependence of kinetic cnrrents, experimental data are needed in which the kinetic currents are varied by at least an order of magnitnde. It follows that in at least one point the ratio 4/4 shonld not be higher than 3. In the case considered in Section 6.4, where 4,red = 4,ox this corresponds to valnes of 4/4 or k°/Kj which are not higher than 0.15. The highest valne of typically fonnd in aqneons solntions is about 2 X 10 cm/s. It follows that steady-state methods can yield reliable kinetic parameters only for reactions in which < 3 X 10 cm/s. At a component concentration of this corresponds... [Pg.198]

The values of the rate constants obtained are fairly comparable to those given in the literature, and the present technique appears to be quite reliable for determination of kinetics parameters of fast reactions. [Pg.232]

Solving the detailed reaction mechanisms to produce rational explanations of cationoid polymerisations and reliable values of kinetic parameters has been Peter s consistent goal for over 50 years. Unlike many people who devote their lives to a single topic, if, in order to advance the subject, some new experimental technique was required he and his group developed it over the years they developed several devices and procedures to generate more-reliable data. Peter, therefore, was a serious experimentalist as well as a careful analyser and scrutinizer of data, data of his and of others. Over the years he freely criticised not only the work of others but also his own work (as is apparent in this volume) in order to develop a more complete understanding of systems. Thus, this book reports his contributions warts and all where one paper may criticise a preceding paper. [Pg.8]

Several investigators have offered various techniques for estimating crystallization growth and nucleation parameters. Parameters such as kg, 6, and ki are the ones usually estimated. Often different results are presented for identical systems. These discrepancies are discussed by several authors (13,14). One weakness of most of these schemes is that the validity of the parameter estimates, i.e., the confidence in the estimates, is not assessed. This section discusses two of the more popular routines to evaluate kinetic parameters and introduces a method that attempts to improve the parameter inference and provide a measure of the reliability of the estimates. [Pg.104]

Using the analysis technique described above, it was determined that while the addition of the weight percent information narrowed the parameter confidence intervals, this additional measurement does not allow reliable estimation of all kinetic parameters. [Pg.107]

In the spatially ID model of the monolith channel, no transverse concentration gradients inside the catalytic washcoat layer are considered, i.e. the influence of internal diffusion is neglected or included in the employed reaction-kinetic parameters. It may lead to the over-prediction of the achieved conversions, particularly with the increasing thickness of the washcoat layer (cfi, e.g., Aris, 1975 Kryl et al., 2005 Tronconi and Beretta, 1999 Zygourakis and Aris, 1983). To overcome this limitation, the effectiveness-factor concept can be used in a limited extent (cf. Section III.D). Despite the drawbacks coming from the fact that internal diffusion effects are implicitly included in the reaction kinetics, the ID plug-flow model is extensively used in automotive industry, thanks to the reasonable combination of physical reliability and short computation times. [Pg.114]

Another approach for the determination of the kinetic parameters is to use the SAS NLIN (NonLINear regression) procedure (SAS, 1985) which produces weighted least-squares estimates of the parameters of nonlinear models. The advantages of this technique are that (1) it does not require linearization of the Michaelis-Menten equation, (2) it can be used for complicated multiparameter models, and (3) the estimated parameter values are reliable because it produces weighted least-squares estimates. [Pg.24]

Furthermore, since most large-scale fermentations are carried out in batch mode, the kinetic parameters determined by the chemostat study should be able to predict the growth in a batch fermenter. However, due to the significantly different environments of batch and continuous fermenters, the kinetic model developed from the CSTF runs may fail to predict the growth behavior of a batch fermenter. Nevertheless, the verification of a kinetic model and the evaluation of kinetic parameters by running chemostat is the most reliable method because of its constant medium environment. [Pg.144]

Note that the results of our simulation via the pseudohomogeneous model tracks the actual plant very closely. However, since the effectiveness factors r]i were included in a lumped empirical fashion in the kinetic parameters, this model is not suitable for other reactors. A heterogeneous model, using intrinsic kinetics and a rigorous description of the diffusion and conduction, as well as the reactions in the catalyst pellet will be more reliable in general and can be used to extract intrinsic kinetic parameters from the industrial data. [Pg.509]

Lineweaver-Burk plot. None of the graphical procedures, however, yield reliable kinetic parameters, but are useful to obtain a qualitative feel for the kinetics of the system. [Pg.317]

Through the analysis of the particular selected examples it was shown that it is possible to get a good description of temperature and conversion profiles generated during the cure of a thermosetting polymer. Thermal and mass balances, with adequate initial and boundary conditions, may always be stated for a particular process. These balances, together with constitutive equations for the cure kinetics and reliable values of the necessary parameters, can be solved numerically to simulate the cure process. [Pg.289]

A direct kinetic problem consists of calculating multi-component reaction mixture compositions and reaction rates on the basis of a given kinetic model (both steady-state and unsteady-state) with the known parameters. Reliable solution for the direct problem is completely dependent on whether these parameters, obtained either on theoretical grounds or from special experiments, have reliable values. Modern computers can solve high-dimensional problems. Both American and Soviet specialists have calculated kinetics for the mechanisms with more than a hundred steps (e.g. the reac-... [Pg.57]

Numerous reports are available [19,229-248] on the development and analysis of the different procedures of estimating the reactivity ratio from the experimental data obtained over a wide range of conversions. These procedures employ different modifications of the integrated form of the copolymerization equation. For example, intersection [19,229,231,235], (KT) [236,240], (YBR) [235], and other [242] linear least-squares procedures have been developed for the treatment of initial polymer composition data. Naturally, the application of the non-linear procedures allows one to obtain more accurate estimates of the reactivity ratios. However, majority of the calculation procedures suffers from the fact that the measurement errors of the independent variable (the monomer feed composition) are not considered. This simplification can lead in certain cases to significant errors in the estimated kinetic parameters [239]. Special methods [238, 239, 241, 247] were developed to avoid these difficulties. One of them called error-in-variables method (EVM) [239, 241, 247] seems to be the best. EVM implies a statistical approach to the general problem of estimating parameters in mathematical models when the errors in all measured variables are taken into account. Though this method requires more information than do ordinary non-linear least-squares procedures, it provides more reliable estimates of rt and r2 as well as their confidence limits. [Pg.61]


See other pages where Kinetic parameters, reliability is mentioned: [Pg.2216]    [Pg.377]    [Pg.378]    [Pg.388]    [Pg.95]    [Pg.22]    [Pg.277]    [Pg.481]    [Pg.384]    [Pg.1]    [Pg.324]    [Pg.113]    [Pg.116]    [Pg.232]    [Pg.102]    [Pg.108]    [Pg.564]    [Pg.173]    [Pg.254]    [Pg.475]    [Pg.151]    [Pg.388]    [Pg.276]    [Pg.551]    [Pg.60]    [Pg.1529]    [Pg.164]    [Pg.434]    [Pg.254]    [Pg.66]    [Pg.3]   
See also in sourсe #XX -- [ Pg.539 ]




SEARCH



Kinetic parameters

Kinetics parameters

© 2024 chempedia.info