Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Kinetics desired reaction

Only 20—40% of the HNO is converted ia the reactor to nitroparaffins. The remaining HNO produces mainly nitrogen oxides (and mainly NO) and acts primarily as an oxidising agent. Conversions of HNO to nitroparaffins are up to about 20% when methane is nitrated. Conversions are, however, often ia the 36—40% range for nitrations of propane and / -butane. These differences ia HNO conversions are explained by the types of C—H bonds ia the paraffins. Only primary C—H bonds exist ia methane and ethane. In propane and / -butane, both primary and secondary C—H bonds exist. Secondary C—H bonds are considerably weaker than primary C—H bonds. The kinetics of reaction 6 (a desired reaction for production of nitroparaffins) are hence considerably higher for both propane and / -butane as compared to methane and ethane. Experimental results also iadicate for propane nitration that more 2-nitropropane [79-46-9] is produced than 1-nitropropane [108-03-2]. Obviously the hydroxyl radical attacks the secondary bonds preferentially even though there are more primary bonds than secondary bonds. [Pg.36]

Chemical Factors. These involve mainly the kinetics of the reaction. The design must provide sufficient residence time for the desired reaction to proceed to the required degree of conversion. [Pg.134]

One very useful application arises when the desired reaction is difficult to measure kinetically. For example, imagine that the reaction of A) and B, the process of interest, does not produce an appreciable instrument signal under the concentration conditions the experiment requires. The reaction of A2 and B, however, can be coupled to it. If this second reaction is well characterized, with a known rate constant, and if P2 is easily detected, one can then study the concurrent reactions of A] and A2 with B. These will then provide the value of the otherw ise unknown k. Since B is limiting, [Pi ] = [B]o [P2]. thereby providing a value for the otherwise unmeasured concentration. With A2 known, the rate constant is... [Pg.62]

The general criteria for an experimental investigation of the kinetics of reactions at liquid-liquid interfaces may be summarized as follows known interfacial area and well-defined interfacial contact are essential controlled, variable, and calculable mass transport rates are required to allow the transport and interfacial kinetic contributions to the overall rate to be quantified direct interfacial contact is preferred, since the use of a membrane to support the interface adds further resistances to the overall rate of the reaction [14,15] a renewable interface is useful, as the accumulation of products at the interface is possible. Finally, direct measurements of reactive fluxes at the interface of interest are desirable. [Pg.333]

Collect together all the kinetic and thermodynamic data on the desired reaction and the side reactions. It is unlikely that much useful information will be gleaned from a literature search, as little is published in the open literature on commercially attractive processes. The kinetic data required for reactor design will normally be obtained from laboratory and pilot plant studies. Values will be needed for the rate of reaction over a range of operating conditions pressure, temperature, flow-rate and catalyst concentration. The design of experimental reactors and scale-up is discussed by Rase (1977). [Pg.486]

Equipment to be Used for the Analysis of Hazards The need for experimental thermodynamic and kinetic data is clear by now. The equipment designed to provide this information for the chemicals involved are described in Chapter 2, and include the DSC, DTA, ARC, Sikarex, SETARAM C-80, and DIERS technology. Kinetic data for the desired reaction are preferably obtained with instrumented bench-scale equipment such as the RC1. This type of equipment is discussed in Section 3.3. [Pg.100]

Modem catalysts have to be very active and very (100%) selective, that is, they have to catalyze the desired reaction in the temperature window, where the equilibrium conversion is the highest possible and the reaction rate is high enough to permit suitable process economics. To engineer the reaction, one has to obtain first the intrinsic reaction rate, free of heat- and mass-transfer limitations. In many cases this is very difficult, because in the core of the catalytic process there are several physical and chemical steps that must occur and which may preclude the reaction running in the kinetic regime. These steps are as follows ... [Pg.199]

The detailed investigations done by Dinjus and coworkers in the area of industrially important types of reactions (e.g., hydroformylation) concerning kinetic data and physicochemical properties of the apphed systems showed the potential to achieve the desired reaction and/or separation conditions via variation of the physical conditions in the reaction vessel [59]. [Pg.10]

A fundamental principle of reaction engineering is that we may be able to find a suitable catalyst that will accelerate a desired reaction while leaving others unchanged or an inhibitor that will slow reaction rates. We note the following important points about the relations between thermodynamics and kinetics ... [Pg.37]

The apparatus s step change from ambient to desired reaction conditions eliminates transport effects between catalyst surface and gas phase reactants. Using catalytic reactors that are already used in industry enables easy transfer from the shock tube to a ffow reactor for practical performance evaluation and scale up. Moreover, it has capability to conduct temperature- and pressure-jump relaxation experiments, making this technique useful in studying reactions that operate near equilibrium. Currently there is no known experimental, gas-solid chemical kinetic method that can achieve this. [Pg.210]

A number of points should be considered to determine the most appropriate experimental conditions for the desired reaction and, to that end, the kinetics of hydrolysis and ionization of 4-methyl-2-phenyl-, 4-benzyl-2-phenyl-, and 4-benzyl-2-methyl-5(4//)-oxazolones have been investigated. Deprotonation of 5(477)-oxazolones in aqueous media, which leads to racemization of optically active 5(477)-oxazolones, is a fast process that competes with the ring opening. The difference between the rate constant for racemization and the ring opening is greater in solvents with dielectric constants less than water and thus, oxazolones racemize faster than they hydrolyze. [Pg.179]

However, they face substantial kinetic barriers, and none of the reactions shown above proceed with appreciable rate under mild conditions. Hence there arises the need for catalysts to facilitate the reactions. Besides, the desired reaction products—i.e., methanol, ethylene oxide, and phenol—are of course just kinetic products. The thermodynamic products for the three reactions shown, i.e., CO2 and H2O, are the same imdesirable two in each case. Thus selectivity is called for, and once again catalysis will be the answer. Based on these fundamental considerations, much effort has already been expended on the search for selective catalysts for O2-driven oxidations [1], and the need for future innovation remains strong. [Pg.117]

Chemical reactions at supercritical conditions are good examples of solvation effects on rate constants. While the most compelling reason to carry out reactions at (near) supercritical conditions is the abihty to tune the solvation conditions of the medium (chemical potentials) and attenuate transport limitations by adjustment of the system pressure and/or temperature, there has been considerable speculation on explanations for the unusual behavior (occasionally referred to as anomalies) in reaction kinetics at near and supercritical conditions. True near-critical anomalies in reaction equilibrium, if any, will only appear within an extremely small neighborhood of the system s critical point, which is unattainable for all practical purposes. This is because the near-critical anomaly in the equilibrium extent of the reaction has the same near-critical behavior as the internal energy. However, it is not as clear that the kinetics of reactions should be free of anomalies in the near-critical region. Therefore, a more accurate description of solvent effect on the kinetic rate constant of reactions conducted in or near supercritical media is desirable (Chialvo et al., 1998). [Pg.86]

It is rare that a catalyst can be chosen for a reaction such that it is entirely specific or unique in its behaviour. More often than not products additional to the main desired product are generated concomitantly. The ratio of the specific chemical rate constant of a desired reaction to that for an undesired reaction is termed the kinetic selectivity factor (which we shall designate by 5) and is of central importance in catalysis. Its magnitude is determined by the relative rates at which adsorption, surface reaction and desorption occur in the overall process and, for consecutive reactions, whether or not the intermediate product forms a localised or mobile adsorbed complex with the surface. In the case of two parallel competing catalytic reactions a second factor, the thermodynamic factor, is also of importance. This latter factor depends exponentially on the difference in free energy changes associated with the adsorption-desorption equilibria of the two competing reactants. The thermodynamic factor also influences the course of a consecutive reaction where it is enhanced by the ability of the intermediate product to desorb rapidly and also the reluctance of the catalyst to re-adsorb the intermediate product after it has vacated the surface. [Pg.129]

In a typical run, the nitrile 1 (30 mmol) and phthalic acid 2 (36 mmol) were introduced into the reactor, and heated under stirring. In the kinetic studies, time zero is taken at complete dissolution of the phthalic acid. At the desired reaction time, the reactor was rapidly cooled in a water-ice mixture and then chloroform (30 mL) was added. The mixture was stirred for 5 min and then the solid was filtered off. The chloroform solution contains the unchanged nitrile 1, the amide and the carboxylic acid 3. The residual solid contains unchanged phthalic acid 2, phthalimide 4, and as the major component, phthalic anhydride 5. The volume of the chloroform solution was adjusted to 50 mL and naphthalene was added as an internal standard. The resulting solution was analyzed by GLC. [Pg.390]

This classification based on water splitting is important to understanding the redox potential of a given semiconductor. Although this classification is simple, it is convenient in selecting a semiconductor that is appropriate for a desired reaction. For a more detailed reactor design, factors such as the lifetimes of carriers energy levels of surface states adsorption and desorption of molecules on the surface kinetic nature of the surface and electron kinetics must be considered (Serpone and Pelizzetti, 1989). [Pg.339]

While enzymes and chiral chemical catalysts compete for best performance in a variety of situations, they have also been used jointly to afford a desired reaction result (Choi, 1999). By far the most frequent application of this concept, termed an enzyme-metal combi reaction (EMCR) , is the dynamic kinetic resolution (DFR) of a racemic mixture with a lipase and an organometallic complex to afford in-situ racemization. [Pg.532]

Conductivity Detection. Pressure-jump measurements can be detected using either optical or conductivity detection. However, conductivity detection is usually preferred since the equilibrium displacement following p-jump is usually small (Bernasconi, 1976). Conductometric detection has been exclusively used by researchers investigating the rapid kinetics of reactions on soil constituents (to be discussed later) because of the high sensitivity, obtained using conductivity and because suspensions are studied. Optical detection would not be desirable for suspensions. [Pg.75]

The main reaction has a lower activation energy, compared to the secondary reactions (Table 9.3). Therefore, low temperature favors the desired reaction. Moreover, equipment corrosion increases at high temperatures. On the other hand, low temperature slows the settling of the acid from the alkylate. In industrial processes, the temperature is around 10 °C. The process designed in this chapter works at -5 °C. This lower temperature could be explained by the inaccuracies of the kinetic data. [Pg.284]

Radicals being neutral species tend to react together. Indeed, the most common side reactions in free-radical processes involve the formation of adducts between two radicals, via combination or disproportionation. These unwanted termination steps usually occur much faster than the desired reactions between radicals and substrates. Thus, the key to control in both radical addition and polymerization procedures consists in lowering the concentration of transient radical species. This will minimize the side reactions between radical species, yet the kinetics of the useful reactions will also be affected. [Pg.156]

The rapid development of biotechnology during the 1980s provided new opportunities for the application of reaction engineering principles. In biochemical systems, reactions are catalyzed by enzymes. These biocatalysts may be dispersed in an aqueous phase or in a reverse micelle, supported on a polymeric carrier, or contained within whole cells. The reactors used are most often stirred tanks, bubble columns, or hollow fibers. If the kinetics for the enzymatic process is known, then the effects of reaction conditions and mass transfer phenomena can be analyzed quite successfully using classical reactor models. Where living cells are present, the growth of the cell mass as well as the kinetics of the desired reaction must be modeled [16, 17]. [Pg.208]

Charge-transfer overpotential — The essential step of an - electrode reaction is the charge (- electron or - ion) transfer across the phase boundary (- interface). In order to overcome the activation barrier related to this process and thus enhance the desirable reaction, an - overpotential is needed. It is called charge-transfer (or transfer or electron transfer) overpotential (f/ct). This overpotential is identical with the - activation overpotential. Both expressions are used in the literature [i-iv]. Refs. [i] Bard A], Faulkner LR (2001) Electrochemical methods. Wiley, New York, pp 87-124 [ii] Erdey-Gruz T (1972) Kinetics of electrode processes. Akademiai Kiadd, Budapest, pp 19-56 [Hi] Inzelt G (2002) Kinetics of electrochemical reactions. In Scholz F (ed) Electroanalytical methods. Springer, Berlin, pp 29-33 [iv] Hamann CH, Hamnett A, Viel-stich W (1998) Electrochemistry. Wiley VCH, Weinheim, p 145... [Pg.86]

The experimental program for the kinetic study comprised only 17 experiments altogether, but the formal program was not started until the ability to obtain quality data had been established. This meant that we had fine-tuned analytical methods and experimental procedures so that good material balances could be obtained routinely at any desired reaction conditions. Also, by the time the formal program was started, the catalyst activity in the autoclave had declined to a relatively constant level from the hyperactivity characteristic of new hydrogenation catalysts. [Pg.252]


See other pages where Kinetics desired reaction is mentioned: [Pg.154]    [Pg.160]    [Pg.7]    [Pg.29]    [Pg.146]    [Pg.171]    [Pg.703]    [Pg.89]    [Pg.69]    [Pg.260]    [Pg.15]    [Pg.136]    [Pg.6]    [Pg.695]    [Pg.1097]    [Pg.9]    [Pg.156]    [Pg.57]    [Pg.163]    [Pg.6]    [Pg.246]    [Pg.19]    [Pg.146]    [Pg.479]    [Pg.94]    [Pg.354]    [Pg.288]   
See also in sourсe #XX -- [ Pg.71 ]




SEARCH



Desirable reactions

Desired

Desires

© 2024 chempedia.info