Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Concentration conditions

In this study we examined the influence of concentration conditions, acidity of solutions, and electrolytes inclusions on the liophilic properties of the surfactant-rich phases of polyethoxylated alkylphenols OP-7 and OP-10 at the cloud point temperature. The liophilic properties of micellar phases formed under different conditions were determined by the estimation of effective hydration values and solvatation free energy of methylene and carboxyl groups at cloud-point extraction of aliphatic acids. It was demonstrated that micellar phases formed from the low concentrated aqueous solutions of the surfactant have more hydrophobic properties than the phases resulting from highly concentrated solutions. The influence of media acidity on the liophilic properties of the surfactant phases was also exposed. [Pg.50]

The effectiveness of a porous catalyst T] is defined as the actual diffusion-limited reaction rate divided by the reaction rate that could have been achieved if all the internal surface had been at bulk concentration conditions. [Pg.25]

A more recent process, the P2 etch [60], which uses ferric sulfate as an oxidizer in place of sodium dichromate avoids the use of toxic chromates, but still provides a similar oxide surface morphology (Fig. 15) allowing a mechanically interlocked interface and strong bonding [9]. The P2 treatment has wide process parameter windows over a broad range of time-temperature-solution concentration conditions and mechanical testing confirms that P2-prepared surfaces are, at a minimum, equivalent to FPL-prepared specimens and only slightly inferior to PAA-prepared surfaces [61]. [Pg.964]

The relationship between adsorption capacity and surface area under conditions of optimum pore sizes is concentration dependent. It is very important that any evaluation of adsorption capacity be performed under actual concentration conditions. The dimensions and shape of particles affect both the pressure drop through the adsorbent bed and the rate of diffusion into the particles. Pressure drop is lowest when the adsorbent particles are spherical and uniform in size. External mass transfer increases inversely with d (where, d is particle diameter), and the internal adsorption rate varies inversely with d Pressure drop varies with the Reynolds number, and is roughly proportional to the gas velocity through the bed, and inversely proportional to the particle diameter. Assuming all other parameters being constant, adsorbent beds comprised of small particles tend to provide higher adsorption efficiencies, but at the sacrifice of higher pressure drop. This means that sharper and smaller mass-transfer zones will be achieved. [Pg.291]

Lisk and Stacy reported " a dependence of concentration on the formation of the isomers. Under concentrated conditions (2 parts Dowtherm A to 1 part enamino-ester) the 5-isomer was almost formed exclusively, while under dilute conditions (30 1), the 7-isomer predominated. [Pg.401]

Fig. 3-3. Comparison of the values of enantiomeric resolution of different DNP-D,L-amino acids at different deconvolution stages of a cyclic hexapeptide sublibrary. Resolution values in a cyclo(Arg-Lys-X-X-X-P-Ala) sublibrary, in the first line, are compared to those obtained in sublibraries with a progressively increasing number of defined positions. All the sublibraries were 30 mM in the running buffer while the completely defined cyclo(Arg-Lys-Tyr-P-Tyr-P-Ala) peptide is used at 10 mM concentration. Conditions cyclopeptide sublibrary in 20 mM sodium phosphate buffer, pH 7.0 capillary, 50 pm i.d., 65 cm total length, 57 cm to the window V = -20 kV, I = 40 electrokinetic injection, -10 kV, 3 s detection at 340 nm. (Reprinted with permission from ref. [75]. Copyright 1998, American Chemical Society.)... Fig. 3-3. Comparison of the values of enantiomeric resolution of different DNP-D,L-amino acids at different deconvolution stages of a cyclic hexapeptide sublibrary. Resolution values in a cyclo(Arg-Lys-X-X-X-P-Ala) sublibrary, in the first line, are compared to those obtained in sublibraries with a progressively increasing number of defined positions. All the sublibraries were 30 mM in the running buffer while the completely defined cyclo(Arg-Lys-Tyr-P-Tyr-P-Ala) peptide is used at 10 mM concentration. Conditions cyclopeptide sublibrary in 20 mM sodium phosphate buffer, pH 7.0 capillary, 50 pm i.d., 65 cm total length, 57 cm to the window V = -20 kV, I = 40 electrokinetic injection, -10 kV, 3 s detection at 340 nm. (Reprinted with permission from ref. [75]. Copyright 1998, American Chemical Society.)...
The quality of the air supply directly affects the output, efficiency and life of the engine. The requirement of the induction system must therefore be to supply the engine with clean dry air close to ambient temperature conditions. Oil bath or dry (paper element) filters are adequate for low dust concentration conditions. However, as the dust burden of the air increases, centrifugal pre-cleaners become... [Pg.196]

Standard potentials are determined with full consideration of activity effects, and are really limiting values. They are rarely, if ever, observed directly in a potentiometric measurement. In practice, measured potentials determined under defined concentration conditions (formal potentials) are very useful for predicting the possibilities of redox processes. Further details are given in Section 10.90. [Pg.65]

Deposits also are commonly formed as a result of corrosion processes. For example, at lower FW temperatures and higher oxygen concentrations (conditions often found in food processors, laundries, or dye houses, where small low-load FT boilers generate steam for batch operations), the corrosion product hematite is often formed. [Pg.146]

One very useful application arises when the desired reaction is difficult to measure kinetically. For example, imagine that the reaction of A) and B, the process of interest, does not produce an appreciable instrument signal under the concentration conditions the experiment requires. The reaction of A2 and B, however, can be coupled to it. If this second reaction is well characterized, with a known rate constant, and if P2 is easily detected, one can then study the concurrent reactions of A] and A2 with B. These will then provide the value of the otherw ise unknown k. Since B is limiting, [Pi ] = [B]o [P2]. thereby providing a value for the otherwise unmeasured concentration. With A2 known, the rate constant is... [Pg.62]

Steady-state mechanism. Consider the oxidation of RufNHj) by CL, which is believed to occur by the scheme shown below at constant pH. Imagine that one does a series of experiments with [Ru(NHs)g+ ] [O2]. Derive the steady-state rate law. Could these experiments equally well have had the reverse inequality of concentrations Should [RulNH.O ] also be adjusted (how and why) What apparent rate constant could be obtained from the concentration conditions that you consider optimum How would you design a longer series of experiments, and what rate constants could be obtained from the data If the data were examined graphically, what quantities would be displayed on the axes to obtain linear plots, and how would the rate constants be obtained from them ... [Pg.99]

The copper system appears to behave similarly to the silver system, and it may be used here in order to illustrate the idea of "selective, naked-cluster cryophotochemistry 150,151). A typical series of optical-spectral traces that illustrate these effects for Cu atoms is given in Fig. 15, which shows the absorptions of isolated Cu atoms in the presence of small proportions of Cu2, and traces of Cus molecules. Under these concentration conditions, the outcome of 300-nm, narrow-band photoexcitation of atomic Cu is photoaggregation up to the Cus stage. The growth-decay behavior of the various cluster-absorptions allows unequivocal pinpointing of UV-visible, electronic transitions associated with Cuj and Cus 150). With the distribution of Cui,2,3 shown in Fig. 15, 370-nm, narrow-band excitation of Cu2 can be considered. Immediately apparent from these optical spectra is the growth (—10%) of the Cu atomic-resonance lines. Noticeable also is the concomitant... [Pg.103]

Nickel atoms have also been allowed to react with C2H4 under cryogenic conditions (101,123). Depending on the metal-concentration conditions and the deposition temperature, either mononuclear species, Ni(C2H4) , n = 1-3(123), or multinuclear species, Ni2(C2H4) ,m = 1-2, and Ni3(CjH4)i, may be isolated. Unlike the copper complexes, these species are all colorless the mononuclear ethylene complexes each dis-... [Pg.122]

Referring to Fig. 1.4, the solution begins with the initial concentration conditions Aq, Bq, Cq and Dq, defined at time t = 0. Knowing the magnitudes of the kinetic rate constants k], k2, k3 and k4, thus enables the initial rates of change dCA/dt, dCfi/dt, dCc/dt and dCo/dt, to be determined. Extrapolating these rates over a short period of time At, from the initial conditions, Aq, Bq, Cq and Do, enables new values for A, B, C and D to be estimated at the new time, t = t -I- At. If the incremental time step At is sufficiently small, it is assumed that the error in the new estimated values of the concentration. A, B, C and D, will also be small. This procedure is then repeated for further small increments of time until the entire concentration versus time curves have been determined. [Pg.123]

A plug-flow, liquid-liquid, extraction column is represented in Fig. 4.19. For convenience, it is assumed that the column operates under low concentration conditions, such that the aqueous and organic flow rates, L and G, respectively... [Pg.253]

Most biological reactions fall into the categories of first-order or second-order reactions, and we will discuss these in more detail below. In certain situations the rate of reaction is independent of reaction concentration hence the rate equation is simply v = k. Such reactions are said to be zero order. Systems for which the reaction rate can reach a maximum value under saturating reactant conditions become zero ordered at high reactant concentrations. Examples of such systems include enzyme-catalyzed reactions, receptor-ligand induced signal transduction, and cellular activated transport systems. Recall from Chapter 2, for example, that when [S] Ku for an enzyme-catalyzed reaction, the velocity is essentially constant and close to the value of Vmax. Under these substrate concentration conditions the enzyme reaction will appear to be zero order in the substrate. [Pg.252]

Under linear concentration conditions (for a P-C concentration range of 0.12-6pM) at 16h incubation and under cell culture conditions mimicking the in vivo postprandial state, the extent of absorption of all-trans P-C through Caco-2 cell monolayers was 11% a value similar to that reported from different human studies. In humans, the bioavailability of a single dose of P-C... [Pg.371]

The application of the maximum outlet concentration condition (Savelski and Bagajewicz, 2000) allows for the simplification of constraint (9.5) and subsequent linearisation of two nonlinear terms present in the resulting constraint. This is done as follows. [Pg.210]


See other pages where Concentration conditions is mentioned: [Pg.481]    [Pg.263]    [Pg.12]    [Pg.615]    [Pg.287]    [Pg.195]    [Pg.104]    [Pg.121]    [Pg.131]    [Pg.70]    [Pg.1394]    [Pg.14]    [Pg.72]    [Pg.59]    [Pg.175]    [Pg.253]    [Pg.570]    [Pg.318]    [Pg.820]    [Pg.446]    [Pg.335]    [Pg.131]    [Pg.117]    [Pg.108]    [Pg.1]    [Pg.210]    [Pg.121]    [Pg.838]    [Pg.854]    [Pg.856]    [Pg.403]   
See also in sourсe #XX -- [ Pg.717 ]




SEARCH



Boundary Conditions for Concentration

Boundary conditions concentration

Concentrating zone 56-------------------Conditioning chamber

Concentration Conditions That Must Be Respected to Obtain Satisfactory Titrations of Strong Acids and Bases

Conditional Constants, Parasitic Reaction Coefficients, and Apparent Concentrations

Conditional concentration quotient

Electron concentration growth condition dependence

Nemstian conditions, concentration

Optimizing Experimental Conditions Concentration Dependence

Polymerization conditions hydrogen peroxide concentration

Polymerization conditions monomer concentration

Surface Concentration of Depositing Ions in the Periodic Conditions

The method of conditional concentrations

Theta condition: concentration regimes

© 2024 chempedia.info