Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Kerosene oxidized

In the oxidation stripping process the uranium(VI) in the raw wet process acid is initially reduced to uranium(IV), which is extracted with a mixture of mono and dioctylphenyl esters of phosphoric acid in kerosene. Oxidation with sodium chlorate in phosphoric acid transfers the uranium to the aqueous phase and it is then extracted with trioctylphosphine oxide/di-(2-ethyIhexyl)-phosphate, as in the reduction stripping process. [Pg.606]

It is one of the most reactive and electropositive of metals. Except for lithium, it is the lightest known metal. It is soft, easily cut with a knife, and is silvery in appearance immediately after a fresh surface is exposed. It rapidly oxidizes in air and must be preserved in a mineral oil such as kerosene. [Pg.46]

Strontium is softer than calcium and decomposes in water more vigorously. It does not absorb nitrogen below 380oC. It should be kept under kerosene to prevent oxidation. Freshly cut strontium has a silvery appearance, but rapidly turns a yellowish color with the formation of the oxide. The finely divided metal ignites spontaneously in air. Volatile strontium salts impart a beautiful crimson color to flames, and these salts are used in pyrotechnics and in the production of flares. Natural strontium is a mixture of four stable isotopes. [Pg.102]

The significance of the total sulfur content of kerosene varies greatly with the type of oil and the use to which it is put. Sulfur content is of great importance when the kerosene to be burned produces sulfur oxides, which are of environmental concern. The color of kerosene is of Htde significance but a product darker than usual may have resulted from contamination or aging in fact, a color darker than specified may be considered by some users as unsatisfactory. Kerosene, because of its use as a burning oil, must be free of aromatic and unsaturated hydrocarbons the desirable constituents of kerosene are saturated hydrocarbons. [Pg.211]

Another sulfur dioxide appHcation in oil refining is as a selective extraction solvent in the Edeleanu process (323), wherein aromatic components are extracted from a kerosene stream by sulfur dioxide, leaving a purified stream of saturated aHphatic hydrocarbons which are relatively insoluble in sulfur dioxide. Sulfur dioxide acts as a cocatalyst or catalyst modifier in certain processes for oxidation of o-xylene or naphthalene to phthaHc anhydride (324,325). [Pg.148]

There are a number of minerals in which thorium is found. Thus a number of basic process flow sheets exist for the recovery of thorium from ores (10). The extraction of mona ite from sands is accompHshed via the digestion of sand using hot base, which converts the oxide to the hydroxide form. The hydroxide is then dissolved in hydrochloric acid and the pH adjusted to between 5 and 6, affording the separation of thorium from the less acidic lanthanides. Thorium hydroxide is dissolved in nitric acid and extracted using methyl isobutyl ketone or tributyl phosphate in kerosene to yield Th(N02)4,... [Pg.35]

Stannic Chloride. Stannic chloride is available commercially as anhydrous stannic chloride, SnCl (tin(IV) chloride) stannic chloride pentahydrate, SnCl 5H20 and in proprietary solutions for special appHcations. Anhydrous stannic chloride, a colorless Aiming Hquid, fumes only in moist air, with the subsequent hydrolysis producing finely divided hydrated tin oxide or basic chloride. It is soluble in water, carbon tetrachloride, benzene, toluene, kerosene, gasoline, methanol, and many other organic solvents. With water, it forms a number of hydrates, of which the most important is the pentahydrate. Although stannic chloride is an almost perfect electrical insulator, traces of water make it a weak conductor. [Pg.65]

For solvent extraction of a tetravalent vanadium oxyvanadium cation, the leach solution is acidified to ca pH 1.6—2.0 by addition of sulfuric acid, and the redox potential is adjusted to —250 mV by heating and reaction with iron powder. Vanadium is extracted from the blue solution in ca six countercurrent mixer—settler stages by a kerosene solution of 5—6 wt % di-2-ethyIhexyl phosphoric acid (EHPA) and 3 wt % tributyl phosphate (TBP). The organic solvent is stripped by a 15 wt % sulfuric acid solution. The rich strip Hquor containing ca 50—65 g V20 /L is oxidized batchwise initially at pH 0.3 by addition of sodium chlorate then it is heated to 70°C and agitated during the addition of NH to raise the pH to 0.6. Vanadium pentoxide of 98—99% grade precipitates, is removed by filtration, and then is fused and flaked. [Pg.392]

Combustion. The primary reaction carried out in the gas turbine combustion chamber is oxidation of a fuel to release its heat content at constant pressure. Atomized fuel mixed with enough air to form a close-to-stoichiometric mixture is continuously fed into a primary zone. There its heat of formation is released at flame temperatures deterruined by the pressure. The heat content of the fuel is therefore a primary measure of the attainable efficiency of the overall system in terms of fuel consumed per unit of work output. Table 6 fists the net heat content of a number of typical gas turbine fuels. Net rather than gross heat content is a more significant measure because heat of vaporization of the water formed in combustion cannot be recovered in aircraft exhaust. The most desirable gas turbine fuels for use in aircraft, after hydrogen, are hydrocarbons. Fuels that are liquid at normal atmospheric pressure and temperature are the most practical and widely used aircraft fuels kerosene, with a distillation range from 150 to 300 °C, is the best compromise to combine maximum mass —heat content with other desirable properties. For ground turbines, a wide variety of gaseous and heavy fuels are acceptable. [Pg.412]

The first commercial supersonic transport, the Concorde, operates on Jet A1 kerosene but produces unacceptable noise and exhaust emissions. Moreover, it is limited in capacity to 100 passengers and to about 3000 miles in range. At supersonic speed of Mach 2, the surfaces of the aircraft are heated by ram air. These surfaces can raise the temperature of fuel held in the tanks to 80 °C. Since fuel is the coolant for airframe and engine subsystems, fuel to the engine can reach 150°C (26). An HSCT operated at Mach 3 would place much greater thermal stress on fuel. To minimize the formation of thermal oxidation deposits, it is likely that fuel deflvered to the HSCT would have to be deoxygenated. [Pg.417]

Ethylene oxide is produced in large, multitubular reactors cooled by pressurized boiling Hquids, eg, kerosene and water. Up to 100 metric tons of catalyst may be used in a plant. Typical feed stream contains about 30% ethylene, 7—9% oxygen, 5—7% carbon dioxide the balance is diluent plus 2—5 ppmw of a halogenated moderator. Typical reactor temperatures are in the range 230—300°C. Most producers use newer versions of the Shell cesium-promoted silver on alumina catalyst developed in the mid-1970s. [Pg.202]

Ce(IV) extracts more readily iato organic solvents than do the trivalent Ln(III) ions providing a route to 99% and higher purity cerium compounds. Any Ce(III) content of mixed lanthanide aqueous systems can be oxidi2ed to Ce(IV) and the resultiag solutioa, eg, of nitrates, contacted with an organic extractant such as tributyl phosphate dissolved in kerosene. The Ce(IV) preferentially transfers into the organic phase. In a separate step the cerium can be recovered by reduction to Ce(III) followed by extraction back into the aqueous phase. Cerium is then precipitated and calcined to produce the oxide. [Pg.366]

Many similar hydrocarbon duids such as kerosene and other paraffinic and naphthenic mineral oils and vegetable oils such as linseed oil [8001-26-17, com oil, soybean oil [8001-22-7] peanut oil, tall oil [8000-26-4] and castor oil are used as defoamers. Liquid fatty alcohols, acids and esters from other sources and poly(alkylene oxide) derivatives of oils such as ethoxylated rosin oil [68140-17-0] are also used. Organic phosphates (6), such as tributyl phosphate, are valuable defoamers and have particular utiHty in latex paint appHcations. Another important class of hydrocarbon-based defoamer is the acetylenic glycols (7), such as 2,4,7,9-tetramethyl-5-decyne-4,7-diol which are widely used in water-based coatings, agricultural chemicals, and other areas where excellent wetting is needed. [Pg.463]

Pyrolysis of alkanes is referred to as eraeking. Alkanes from the paraffins (kerosene) fraetion in the vapor state are passed through a metal ehamher heated to 400-700°C. Metallie oxides are used as a eatalyst. The starting alkanes are broken down into a mixture of smaller alkanes, alkenes, and some hydrogen. [Pg.5]

A piece of sodium metal stored under kerosene m a metal container is removed from ajar and blotted with dry napkin or filter paper With a sharp knife, the layer of oxides IS removed until a shiny surface appears The removed layer is then destroyed carefully by adding very small pieces (not larger than 0 5 cm) to precooled 200 mL of methanol or ethanol... [Pg.1024]

A final, somewhat variable outlet for large-scale liquid oxygen is as oxidant in rocket fuels for space exploration, satellite launching and space shuttles. For example, in the Apollo mission to the moon (1979), each Saturn 5 launch rocket used 1270 m (i.e. 1.25 million litres or 1450 tonnes) of liquid oxygen in Stage 1, where it oxidized the kerosene fuel (195 000 1, or about 550 tonnes) in the almost unbelievably short time of 2.5 min. Stages 2 and 3 had 315 and 76.3 m of liquid O2 respectively, and the fuel was liquid FI2. [Pg.604]

Purification of industrial oils, kerosene/jet fuel, lubricating oils Mono- dicumyldiphenylamine Mono- dioctyldiphenylamine Dimer fatty acids Purification of xylenes Improvement of bromine number of recycle cumene in phenol plants Improvement of bromine number of recycle ethylbenzene in styrene plants based on liquid pha.se oxidation Alkylation of xylenes with diisobutylenes to mono-/ rr-butyI derivatives Phenyl xylyl ethane... [Pg.134]

The present description pertaining to copper refers to solvent extraction of copper at the Bluebird Mine, Miami. When the plant became operational in the first quarter of 1968 it used L1X 64, but L1X 64N was introduced in to its operation from late 1968. The ore consists of the oxidized minerals, chrysocolla and lesser amounts of azurite and malachite. A heap leaching process is adopted for this copper resource. Heap-leached copper solution is subjected to solvent extraction operation, the extractant being a solution of 7-8% L1X 64N incorporated in kerosene diluent. The extraction process flowsheet is shown in Figure 5.20. The extraction equilibrium diagram portrayed in Figure 5.21 (A) shows the condi-... [Pg.524]

The flotation feed at the Valkoomesky plant contains tourmaline (18%), biotite (13%), muscovite (17%), limonite (2%) and sulphides (5%). Tin assays in the flotation feed averaged about 0.5% Sn, of which the bulk was contained in the -48 to +12 pm fractions. Flotation of tin was carried out with sea water using oxidized petroleum solution in kerosene (1 2 ratio). [Pg.102]

Collector LAC2 is similar in composition to TX26, except that the carbamic acid is replaced with oxidized sulphonate solution in kerosene (R825). [Pg.104]

Kerosene 35 kWhkg 1 for complete oxidation, based on 100% current... [Pg.217]

The solvent process involves treating phthalonitrile with any one of a number of copper salts in the presence of a solvent at 120 to 220°C [10]. Copper(I)chloride is most important. The list of suitable solvents is headed by those with a boiling point above 180°C, such as trichlorobenzene, nitrobenzene, naphthalene, and kerosene. A metallic catalyst such as molybdenum oxide or ammonium molybdate may be added to enhance the yield, to shorten the reaction time, and to reduce the necessary temperature. Other suitable catalysts are carbonyl compounds of molybdenum, titanium, or iron. The process may be accelerated by adding ammonia, urea, or tertiary organic bases such as pyridine or quinoline. As a result of improved temperature maintenance and better reaction control, the solvent method affords yields of 95% and more, even on a commercial scale. There is a certain disadvantage to the fact that the solvent reaction requires considerably more time than dry methods. [Pg.426]

When exposed to the atmosphere, sodium amide rapidly takes up moisture and carbon dioxide. When exposed to only limited amounts, as in imperfectly sealed containers, products are formed which render the resulting mixture highly explosive.1 The formation of oxidation products is accompanied by the development of a yellow or brownish color. If such a change is noticed, the substance should be destroyed at once. This is conveniently accomplished by covering with much benzene, toluene, or kerosene and slowly adding dilute alcohol with stirring. [Pg.46]


See other pages where Kerosene oxidized is mentioned: [Pg.637]    [Pg.637]    [Pg.387]    [Pg.51]    [Pg.512]    [Pg.201]    [Pg.254]    [Pg.410]    [Pg.417]    [Pg.15]    [Pg.292]    [Pg.1255]    [Pg.1022]    [Pg.541]    [Pg.284]    [Pg.911]    [Pg.911]    [Pg.529]    [Pg.62]    [Pg.303]    [Pg.121]    [Pg.8]    [Pg.197]    [Pg.315]    [Pg.402]    [Pg.56]    [Pg.52]    [Pg.191]    [Pg.100]   
See also in sourсe #XX -- [ Pg.252 ]




SEARCH



Kerosene

© 2024 chempedia.info