Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Butadiene/ethylene copolymers

Indicate cycloolefin monomers that will be polymerised by metathesis catalysts to polymers with a structure equivalent to polybutadiene, an alternating ethylene/ butadiene copolymer, an alternating butadiene / isoprene copolymer and polyacetylene. [Pg.378]

The problem of cross-linking or grafting low unsaturated rubbers (e. g. EPDMs or EPTMs) or thermoplastics (e. g. ethylene-butadiene copolymer is fundamentally the same. Radical mechanisms are believed to be operative when peroxides or sulfur-based formulations are used, even though in the latter case ionic mechanisms also seem to contribute to the curing process ... [Pg.29]

SIR Styrene -ethylene-butadiene copolymer Styrene -butyl -methacrylate copolymer Ultrastyragel 500 A (Waters) 38 C ... [Pg.200]

Other than this example, they also studied a wide variety of polymers, such as ethylene-butadiene copolymer, ethylene-vinylacrylate copolymer, and their branched polymers. They indicated that, for cases where the junction zone includes crystals, they could not verify functionality, which is equivalent to the number of polymers that form the junction zone. [Pg.54]

This type of adhesive is generally useful in the temperature range where the material is either leathery or mbbery, ie, between the glass-transition temperature and the melt temperature. Hot-melt adhesives are based on thermoplastic polymers that may be compounded or uncompounded ethylene—vinyl acetate copolymers, paraffin waxes, polypropylene, phenoxy resins, styrene—butadiene copolymers, ethylene—ethyl acrylate copolymers, and low, and low density polypropylene are used in the compounded state polyesters, polyamides, and polyurethanes are used in the mosdy uncompounded state. [Pg.235]

Many synthetic latices exist (7,8) (see Elastomers, synthetic). They contain butadiene and styrene copolymers (elastomeric), styrene—butadiene copolymers (resinous), butadiene and acrylonitrile copolymers, butadiene with styrene and acrylonitrile, chloroprene copolymers, methacrylate and acrylate ester copolymers, vinyl acetate copolymers, vinyl and vinyUdene chloride copolymers, ethylene copolymers, fluorinated copolymers, acrylamide copolymers, styrene—acrolein copolymers, and pyrrole and pyrrole copolymers. Many of these latices also have carboxylated versions. [Pg.23]

Organic peroxides are used in the polymer industry as thermal sources of free radicals. They are used primarily to initiate the polymerisation and copolymerisation of vinyl and diene monomers, eg, ethylene, vinyl chloride, styrene, acryUc acid and esters, methacrylic acid and esters, vinyl acetate, acrylonitrile, and butadiene (see Initiators). They ate also used to cute or cross-link resins, eg, unsaturated polyester—styrene blends, thermoplastics such as polyethylene, elastomers such as ethylene—propylene copolymers and terpolymers and ethylene—vinyl acetate copolymer, and mbbets such as siUcone mbbet and styrene-butadiene mbbet. [Pg.135]

The homopolymers, which are formed from alkyl cyanoacrylate monomers, are inherently brittle. For applications which require a toughened adhesive, rubbers or elastomers can be added to improve toughness, without a substantial loss of adhesion. The rubbers and elastomers which have been used for toughening, include ethylene/acrylate copolymers, acrylonitrile/butadiene/styrene (ABS) copolymers, and methacrylate/butadiene/styrene (MBS) copolymers. In general, the toughening agents are incorporated into the adhesive at 5-20 wt.% of the monomer. [Pg.857]

FIGURE 1.12 Master curve of tear energy Gc versus rate R of tear propagation at Tg for three cross-linked elastomers polybutadiene (BR, Tg — —96°C) ethylene-propylene copolymer (EPR, Tg — —60°C) a high-styrene-styrene-butadiene rubber copolymer (HS-SBR, Tg — —30°C). (From Gent, A.N. and Lai, S.-M., J. Polymer Sci., Part B Polymer Phys., 32, 1543, 1994. With permission.)... [Pg.14]

FIGURE 13.2 Calculated relation between the solubility parameter and glass transition temperature (Jg) for a variety of ethylene-propylene copolymers (EPMs) grafted with polar monomers the window for rubbers with an oil resistance similar to or better than hydrogenated acrylonitrile-butadiene copolymer (NBR) (20 wt% acrylonitrile) is also shown. [Pg.399]

We have considerable latitude when it comes to choosing the chemical composition of rubber toughened polystyrene. Suitable unsaturated rubbers include styrene-butadiene copolymers, cis 1,4 polybutadiene, and ethylene-propylene-diene copolymers. Acrylonitrile-butadiene-styrene is a more complex type of block copolymer. It is made by swelling polybutadiene with styrene and acrylonitrile, then initiating copolymerization. This typically takes place in an emulsion polymerization process. [Pg.336]

The isoprene units in the copolymer impart the ability to crosslink the product. Polystyrene is far too rigid to be used as an elastomer but styrene copolymers with 1,3-butadiene (SBR rubber) are quite flexible and rubbery. Polyethylene is a crystalline plastic while ethylene-propylene copolymers and terpolymers of ethylene, propylene and diene (e.g., dicyclopentadiene, hexa-1,4-diene, 2-ethylidenenorborn-5-ene) are elastomers (EPR and EPDM rubbers). Nitrile or NBR rubber is a copolymer of acrylonitrile and 1,3-butadiene. Vinylidene fluoride-chlorotrifluoroethylene and olefin-acrylic ester copolymers and 1,3-butadiene-styrene-vinyl pyridine terpolymer are examples of specialty elastomers. [Pg.20]

Tekon Linear block styrene copolymer with ethylene-butadiene Teknor Apex... [Pg.684]

Copolymer 45,578 Experimental ethylene-butadiene random copolymer Phillips Petroleum, Inc. [Pg.151]

Styrene-butadiene block copolymer Styrene-isoprene block copolymer Styrene-ethylene block copolymer Styrene-butylene block copolymer... [Pg.899]

ABA ABS ABS-PC ABS-PVC ACM ACS AES AMMA AN APET APP ASA BR BS CA CAB CAP CN CP CPE CPET CPP CPVC CR CTA DAM DAP DMT ECTFE EEA EMA EMAA EMAC EMPP EnBA EP EPM ESI EVA(C) EVOH FEP HDI HDPE HIPS HMDI IPI LDPE LLDPE MBS Acrylonitrile-butadiene-acrylate Acrylonitrile-butadiene-styrene copolymer Acrylonitrile-butadiene-styrene-polycarbonate alloy Acrylonitrile-butadiene-styrene-poly(vinyl chloride) alloy Acrylic acid ester rubber Acrylonitrile-chlorinated pe-styrene Acrylonitrile-ethylene-propylene-styrene Acrylonitrile-methyl methacrylate Acrylonitrile Amorphous polyethylene terephthalate Atactic polypropylene Acrylic-styrene-acrylonitrile Butadiene rubber Butadiene styrene rubber Cellulose acetate Cellulose acetate-butyrate Cellulose acetate-propionate Cellulose nitrate Cellulose propionate Chlorinated polyethylene Crystalline polyethylene terephthalate Cast polypropylene Chlorinated polyvinyl chloride Chloroprene rubber Cellulose triacetate Diallyl maleate Diallyl phthalate Terephthalic acid, dimethyl ester Ethylene-chlorotrifluoroethylene copolymer Ethylene-ethyl acrylate Ethylene-methyl acrylate Ethylene methacrylic acid Ethylene-methyl acrylate copolymer Elastomer modified polypropylene Ethylene normal butyl acrylate Epoxy resin, also ethylene-propylene Ethylene-propylene rubber Ethylene-styrene copolymers Polyethylene-vinyl acetate Polyethylene-vinyl alcohol copolymers Fluorinated ethylene-propylene copolymers Hexamethylene diisocyanate High-density polyethylene High-impact polystyrene Diisocyanato dicyclohexylmethane Isophorone diisocyanate Low-density polyethylene Linear low-density polyethylene Methacrylate-butadiene-styrene... [Pg.958]

PS PSF PSU PTFE PU PUR PVA PVAL PVB PVC PVCA PVDA PVDC PVDF PVF PVOH SAN SB SBC SBR SMA SMC TA TDI TEFE TPA UF ULDPE UP UR VLDPE ZNC Polystyrene Polysulfone (also PSU) Polysulfone (also PSF) Polytetrafluoroethylene Polyurethane Polyurethane Poly(vinyl acetate) Poly(vinyl alcohol) poly(vinyl butyrate) Poly(vinyl chloride) Poly(vinyl chloride-acetate) Poly(vinylidene acetate) Poly(vinylidene chloride) Poly(vinylidene fluoride) Poly(vinyl fluoride) Poly(vinyl alcohol) Styrene-acrylonitrile copolymer Styrene-butadiene copolymer Styrene block copolymer Styrene butadiene rubber Styrene-maleic anhydride (also SMC) Styrene-maleic anhydride (also SMA) Terephthalic acid (also TPA) Toluene diisocyanate Ethylene-tetrafluoroethylene copolymer Terephthalic acid (also TA) Urea formaldehyde Ultralow-density polyethylene Unsaturated polyester resin Urethane Very low-density polyethylene Ziegler-Natta catalyst... [Pg.960]

The Ziegler-Natta catalysts have acquired practical importance particularly as heterogeneous systems, mostly owing to the commercial production of linear high- and low-density polyethylenes and isotactic polypropylene. Elastomers based on ethylene-propylene copolymers (with the use of vanadium-based catalysts) as well as 1,4-cz s-and 1,4-tran.y-poly(l, 3-butadiene) and polyisoprene are also produced. These catalysts are extremely versatile and can be used in many other polymerisations of various hydrocarbon monomers, leading very often to polymers of different stereoregularity. In 1963, both Ziegler and Natta were awarded the Nobel Prize in chemistry. [Pg.29]

For the packaging of sensitive foods, PP films are coated with polyvinylidene chloride, polyvinyl acetate, EVAcopolymers, polyacrylates, styrene-butadiene copolymers, LDPE, poly-l-butene or random copolymers of propene with ethylene and 1-butene. By using these various coatings PP has recently sharply reduced the use of regenerated cellulose (cellophane), the previous market leader in this area. [Pg.26]


See other pages where Butadiene/ethylene copolymers is mentioned: [Pg.153]    [Pg.166]    [Pg.166]    [Pg.176]    [Pg.593]    [Pg.192]    [Pg.226]    [Pg.153]    [Pg.166]    [Pg.166]    [Pg.176]    [Pg.593]    [Pg.192]    [Pg.226]    [Pg.186]    [Pg.560]    [Pg.21]    [Pg.166]    [Pg.174]    [Pg.354]    [Pg.395]    [Pg.464]    [Pg.554]    [Pg.776]    [Pg.572]    [Pg.440]    [Pg.738]    [Pg.37]    [Pg.93]    [Pg.136]    [Pg.169]    [Pg.222]    [Pg.12]    [Pg.296]    [Pg.363]    [Pg.3]   
See also in sourсe #XX -- [ Pg.166 ]




SEARCH



Butadiene copolymers

Copolymers ethylene

© 2024 chempedia.info