Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Cyanoacrylate monomers

Acrylic monomers Cyanoacrylates Urea formaldehyde resins... [Pg.308]

Cyanoacrylate adhesives (Super-Glues) are materials which rapidly polymerize at room temperature. The standard monomer for a cyanoacrylate adhesive is ethyl 2-cyanoacrylate [7085-85-0], which readily undergoes anionic polymerization. Very rapid cure of these materials has made them widely used in the electronics industry for speaker magnet mounting, as weU as for wire tacking and other apphcations requiring rapid assembly. Anionic polymerization of a cyanoacrylate adhesive is normally initiated by water. Therefore, atmospheric humidity or the surface moisture content must be at a certain level for polymerization to take place. These adhesives are not cross-linked as are the surface-activated acryhcs. Rather, the cyanoacrylate material is a thermoplastic, and thus, the adhesives typically have poor temperature resistance. [Pg.233]

Acryhc stmctural adhesives have been modified by elastomers in order to obtain a phase-separated, toughened system. A significant contribution in this technology has been made in which acryhc adhesives were modified by the addition of chlorosulfonated polyethylene to obtain a phase-separated stmctural adhesive (11). Such adhesives also contain methyl methacrylate, glacial methacrylic acid, and cross-linkers such as ethylene glycol dimethacrylate [97-90-5]. The polymerization initiation system, which includes cumene hydroperoxide, N,1S7-dimethyl- -toluidine, and saccharin, can be apphed to the adherend surface as a primer, or it can be formulated as the second part of a two-part adhesive. Modification of cyanoacrylates using elastomers has also been attempted copolymers of acrylonitrile, butadiene, and styrene ethylene copolymers with methylacrylate or copolymers of methacrylates with butadiene and styrene have been used. However, because of the extreme reactivity of the monomer, modification of cyanoacrylate adhesives is very difficult and material purity is essential in order to be able to modify the cyanoacrylate without causing premature reaction. [Pg.233]

Figure 4c illustrates interfacial polymerisation encapsulation processes in which the reactant(s) that polymerise to form the capsule shell is transported exclusively from the continuous phase of the system to the dispersed phase—continuous phase interface where polymerisation occurs and a capsule shell is produced. This type of encapsulation process has been carried out at Hquid—Hquid and soHd—Hquid interfaces. An example of the Hquid—Hquid case is the spontaneous polymerisation reaction of cyanoacrylate monomers at the water—solvent interface formed by dispersing water in a continuous solvent phase (14). The poly(alkyl cyanoacrylate) produced by this spontaneous reaction encapsulates the dispersed water droplets. An example of the soHd—Hquid process is where a core material is dispersed in aqueous media that contains a water-immiscible surfactant along with a controUed amount of surfactant. A water-immiscible monomer that polymerises by free-radical polymerisation is added to the system and free-radical polymerisation localised at the core material—aqueous phase interface is initiated thereby generating a capsule sheU (15). [Pg.320]

In dry air and in the presence of polymerisation inhibitors methyl and ethyl 2-cyanoacrylates have a storage life of many months. Whilst they may be polymerised by free-radical methods, anionic polymerisation is of greater significance. A very weak base, such as water, can bring about rapid polymerisation and in practice a trace of moisture on a substrate is enough to allow polymerisation to occur within a few seconds of closing the joint and excluding the air. (As with many acrylic monomers air can inhibit or severely retard polymerisation). [Pg.419]

Cyanoacrylate adhesives are particularly valuable because of their speed of action, which allows the joining of intricate parts without the need for complex jigs and fixtures. Within very broad limits the more monomer that is used to make a joint the less will be the strength. These adhesives have in fact no gapfilling ability, nor can they be used on porous substrates. Whilst they have good heat and solvent resistance their weathering behaviour is limited and joints should not be in frequent contact with water. [Pg.419]

The manufacture of alkyl cyanoacrylate monomers, 1, involves the Knoevenagel reaction of formaldehyde, 2, with an alkyl cyanoacetate, 3, and a base, such as a secondary amine, as the catalyst, shown in Eq. 1. [Pg.848]

Since amines initiate cyanoacrylate polymerization, the monomer cannot be isolated directly, because a polymer is generated immediately after formation of the monomer. An acid is then added to the polymer, and heat (140-180°C) is applied to the reaction mixture. Because of the relatively low ceiling temperature of the polymer, the pure monomer can be isolated, in greater than 80% yield, by the thermal reversion of the polymer back to the free monomer [4,5]. [Pg.848]

To prevent premature polymerization, a strong protic or a Lewis acid is added to the distilled monomer and to adhesive formulations. A wide variety of materials have been utilized as acidic stabilizers in the alkyl cyanoacrylate monomers. A list of some of these materials is shown in Table 1 [2,11-14]. [Pg.849]

These acids can be used alone or as mixtures. It is especially advantageous to use a mixture of liquid and gaseous acids. The gaseous acid will stabilize free monomer in the headspace of a container, while the liquid acid will prevent premature polymerization of the bulk monomer or adhesive. However, it is important to use only a minimum amount of acid, because excess acid will slow initiation and the formation of a strong adhesive bond. It can also accelerate the hydrolysis of the alkyl cyanoacrylate monomer to 2-cyanoacrylic acid, which inhibits the polymerization of the monomer and reduces molecular weight of the adhesive polymer. While carboxylic acids inhibit the polymerization of cyanoacrylate monomer, they do not prevent it completely [15]. Therefore, they cannot be utilized as stabilizers, but are used more for modifying the reactivity of instant adhesives. [Pg.850]

Because they are acrylic monomers, alkyl cyanoacrylate esters still require the addition of radical polymerization inhibitors, such as hydroquinone or hindered phenols, to prevent radically induced polymerization over time [3j. Since basic initiation of alkyl cyanoacrylate monomers is the predominant polymerization mechanism, large quantities of free radical inhibitors can be added, with little or no effect on adhesive performance. [Pg.850]

Ethyl cyanoacrylate is the monomer which is most widely used in both consumer and industrial applications, because of its combination of fast cure speed and ease of manufacture. [Pg.850]

Literature articles, which report the formation and evaluation of difunctional cyanoacrylate monomers, have been published. The preparation of the difunctional monomers required an alternative synthetic method than the standard Knoevenagel reaction for the monofunctional monomers, because the crosslinked polymer thermally decomposes before it can revert back to the free monomer. The earliest report for the preparation of a difunctional cyanoacrylate monomer involved a reverse Diels-Alder reaction of a dicyanoacrylate precursor [16,17]. Later reports described a transesterification with a dicyanoacrylic acid [18] or their formation from the oxidation of a diphenylselenide precursor, seen in Eq. 3 for the dicyanoacrylate ester of butanediol, 7 [6]. [Pg.851]

Solvent swelling experiments, with CH2CI2 and ECA polymer crosslinked with 7, demonstrate that the addition of a difunctional cyanoacrylate monomer does improve solvent resistance [6], shown in Fig. 1. [Pg.852]

Crosslinking has been claimed to improve thermal resistance of the cyanoacrylate adhesive [18]. However, in other reports [6], little or no improvement in thermal resistance of the adhesive was demonstrated by the addition of a difunctional monomer. As seen in Fig. 2, the addition of varying amounts of crosslinker 7 provided no improvement in the tensile adhesive strength of ethyl cyanoacrylate on steel lapshears after thermal exposure at 121 °C for up to 48 h. [Pg.852]

Alkyl cyanoacrylate monomers have been copolymerized with a variety of monomers, both by radical and anionic initiation. The radical-initiated copolymerization with acrylic monomers was performed with a sufficient amount of an acid stabilizer present to suppress polymerization by anionic means [19]. This investigation has been covered extensively elsewhere. [Pg.852]

More recently, the copolymerization of ethyl cyanoacrylate with other 1,1 disubstituted electron deficient monomers and the effect of the monomers on adhesive properties have been studied. Monomers, such as diethyl methylene-malonate (DEMM), 8, were prepared [6,7]. Their homopolymers and copolymers... [Pg.852]

The molecular weights of the polymers are much larger than would be predicted from the monomer/initiator ratio, as seen in Fig. 4. However, this effect is most evident for the polymerization of ethyl cyanoacrylate alone. [Pg.853]

The adhesive properties the other monomers were also evaluated, alone and as mixtures with ethyl cyanoacrylate. The addition of DEMM to ECA has an obvious negative effect on adhesion, as can be seen in Fig. 5. [Pg.853]

All of the eommereial alkyl eyanoaerylate monomers are low-viseosity liquids, and for some applications this can be an advantage. However, there are instances where a viseous liquid or a gel adhesive would be preferred, sueh as for application to a vertical surface or on porous substrates. A variety of viscosity control agents, depending upon the desired properties, have been added to increase the viscosity of instant adhesives [21]. The materials, which have been utilized, include polymethyl methacrylate, hydrophobic silica, hydrophobic alumina, treated quartz, polyethyl cyanoacrylate, cellulose esters, polycarbonates, and carbon black. For example, the addition of 5-10% of amorphous, non-crystalline, fumed silica to ethyl cyanoacrylate changes the monomer viscosity from a 2-cps liquid to a gelled material [22]. Because of the sensitivity of cyanoacrylate esters to basic materials, some additives require treatment with an acid to prevent premature gelation of the product. [Pg.856]

The homopolymers, which are formed from alkyl cyanoacrylate monomers, are inherently brittle. For applications which require a toughened adhesive, rubbers or elastomers can be added to improve toughness, without a substantial loss of adhesion. The rubbers and elastomers which have been used for toughening, include ethylene/acrylate copolymers, acrylonitrile/butadiene/styrene (ABS) copolymers, and methacrylate/butadiene/styrene (MBS) copolymers. In general, the toughening agents are incorporated into the adhesive at 5-20 wt.% of the monomer. [Pg.857]

The data also demonstrate that the addition of the thermoplastic, PMMA, does not have the significant effect on the toughness or adhesion properties as does the addition of the rubber, Vamac B-124. Clearly, the physical properties of the polymeric additive determine the magnitude of the adhesive physical property modifications, which result from their addition to an alkyl cyanoacrylate monomer. [Pg.859]

Care must also be taken in the choice of rubber to insure that the rubber, or one of its additives, does not initiate the premature polymerization of the monomer. Even very low concentrations of a basic or nucleophilic material in the rubber or elastomer will cause the premature polymerization of an alkyl cyanoacrylate adhesive formulation. [Pg.859]

The mechanism by which the primers are thought to work is relatively straightforward. The primer first diffuses into the polyolefin surface, and subsequently becomes entangled in the polyolefin. The primer molecule can then act as an anchor in the substrate surface for the adhesive polymer, which forms after the primer initiates polymerization of the alkyl cyanoacrylate monomer [37]. [Pg.862]

For surfaces which do not readily polymerize alkyl cyanoacrylate monomers, the adhesive monomer can be applied, a part assembled and repositioned, if... [Pg.863]

While alkyl cyanoacrylate-based adhesives are used globally in a large variety of domestic and commercial settings, their physical and toxicological properties must be considered. Alkyl cyanoacrylate polymerization is a very exothermic reaction, so care must be taken to prevent the contamination of large quantities with any materials, which might initiate a very rapid, runaway reaction. Also, alkyl cyanoacrylate monomers and the polymers which they form, will burn, and users should avoid their use near sparks or open flames. [Pg.865]

Synthetic polymers can be classified as either chain-growth polymen or step-growth polymers. Chain-growth polymers are prepared by chain-reaction polymerization of vinyl monomers in the presence of a radical, an anion, or a cation initiator. Radical polymerization is sometimes used, but alkenes such as 2-methylpropene that have electron-donating substituents on the double bond polymerize easily by a cationic route through carbocation intermediates. Similarly, monomers such as methyl -cyanoacrylate that have electron-withdrawing substituents on the double bond polymerize by an anionic, conjugate addition pathway. [Pg.1220]

The adhesive marketed under the tradename Superglue contains the monomer methyl a-cyanoacrylate (Fig. 14.5.1). A variety of cyanoacrylates are commercially sold as contact adhesives with the alkyl group -R denoted in Fig. 14.5.2 varying from a methyl group to produce ethyl, isopropyl, allyl, butyl, isobutyl,... [Pg.219]

Figure 14.5.1 The monomer methyl a-cyanoacrylate found in the adhesive marketed under the trademark Superglue. ... Figure 14.5.1 The monomer methyl a-cyanoacrylate found in the adhesive marketed under the trademark Superglue. ...
In many cases, homopolymerization can be initiated by the anion-radicals of the monomers themselves. Of course, such monomers must have pronounced electron affinity (EA) and be stabilized by delocalization of an unpaired electron. Typical examples are represented by the anion-radicals of 1,1-dicyanoethylene (EA = 1.36 eV) and methyl or ethyl 2-cyanoacrylates (EA = 1.08 eV). In all of these anion-radicals, an unpaired electron is primarily localized on C atom of the CH2 segment and characterized by appreciable resonance stabilization (Brinkmann et al. 2002). These anion-radicals are nucleophilic and attack the neutral monomers to initiate polymerization. [Pg.358]

Cyanoacrylate adhesives, the famous consumer Super glue , is a monomer that polymerizes when it comes in contact with moisture, even with atmospheric moisture. [Pg.359]

Reactive adhesives Reactive adhesives are either low molecular weight polymers or monomers that solidify by polymerization and/or cross-linking reactions after application. Cyanoacrylates, phenolics, silicon rubbers, and epoxies are examples of this type of adhesive. Plywood is formed from impregnation of thin sheets of wood with resin, with the impregnation occurring after the resin is placed between the wooden sheets. [Pg.576]


See other pages where Cyanoacrylate monomers is mentioned: [Pg.24]    [Pg.24]    [Pg.268]    [Pg.176]    [Pg.471]    [Pg.414]    [Pg.847]    [Pg.849]    [Pg.850]    [Pg.851]    [Pg.866]    [Pg.220]    [Pg.22]    [Pg.577]    [Pg.414]   
See also in sourсe #XX -- [ Pg.70 ]

See also in sourсe #XX -- [ Pg.158 ]




SEARCH



CYANOACRYLATE

Cyanoacrylate adhesives monomers

Cyanoacrylates

Difunctional cyanoacrylate monomers

Monomer viscosity cyanoacrylate

Polymerization of Cyanoacrylate Monomers

© 2024 chempedia.info