Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Paraffin alkylation

Saturated—the state in which all available valence bonds of an atom, especially carbon, are attached to other atoms. The straight-chain alkyls (paraffins) are typical saturated compounds. Several fatty acids found in oils and fats are listed in Table 1. Where no double- or tnple-bonds are available, such compounds cannot be hydrogenated because diere are no places for attaching additional hydrogen atoms. [Pg.1671]

MCM-22 crystallizes in thin sheets or plates. Within these sheets, there is evidence of the existence of a buried T-site (a Si or A1 atom) in the framework structure that is not accessible to a channel wall. This buried T-site appears to be unique to MCM-22 and gives the zeolite structural stability even under severe conditions that would destroy other less-stable zeolites. MCM-22 has been actively studied and over 50 US patents have been issued on its use in varied areas, including hydroprocessing, aromatic/olefin alkylation, paraffin/olefin alkylation and dispro-portionation processes, as well as specialty chemical applications. [Pg.231]

The rings most frequently encountered in crude oils are those having five or six carbon atoms. In these rings, each hydrogen atom can be substituted by a paraffinic alkyl chain that is either a straight chain or branched. [Pg.4]

For the refiner, the reduction in benzene concentration to 3% is not a major problem it is achieved by adjusting the initial point of the feed to the catalytic reformers and thereby limiting the amount of benzene precursors such as cyclohexane and Cg paraffins. Further than 3% benzene, the constraints become very severe and can even imply using specific processes alkylation of benzene to substituted aromatics, separation, etc. [Pg.258]

As a complementary process to reforming, isomerization converts normal paraffins to iso-paraffins, either to prepare streams for other conversions nCi —> /C4 destined for alkylation or to increase the motor and research octane numbers of iight components in the gasoiine pooi, i.e., the C5 or Cs-Ce fractions from primary distillation of the crude, or light gasoline from conversion processes, having low octane numbers. [Pg.372]

We cite isomerization of Cs-Ce paraffinic cuts, aliphatic alkylation making isoparaffinic gasoline from C3-C5 olefins and isobutane, and etherification of C4-C5 olefins with the C1-C2 alcohols. This type of refinery can need more hydrogen than is available from naphtha reforming. Flexibility is greatly improved over the simple conventional refinery. Nonetheless some products are not eliminated, for example, the heavy fuel of marginal quality, and the conversion product qualities may not be adequate, even after severe treatment, to meet certain specifications such as the gasoline octane number, diesel cetane number, and allowable levels of certain components. [Pg.485]

When an alkyl halide is treated with sodium, the main product is the paraffin hydrocarbon. The final result may be represented by the equation ... [Pg.236]

Alkylation combines lower-molecular-weight saturated and unsaturated hydrocarbons (alkanes and alkenes) to produce high-octane gasoline and other hydrocarbon products. Conventional paraffin-olefin (alkane-alkene) alkylation is an acid-catalyzed reaction, such as combining isobutylene and isobutane to isooctane. [Pg.102]

In a polluted or urban atmosphere, O formation by the CH oxidation mechanism is overshadowed by the oxidation of other VOCs. Seed OH can be produced from reactions 4 and 5, but the photodisassociation of carbonyls and nitrous acid [7782-77-6] HNO2, (formed from the reaction of OH + NO and other reactions) are also important sources of OH ia polluted environments. An imperfect, but useful, measure of the rate of O formation by VOC oxidation is the rate of the initial OH-VOC reaction, shown ia Table 4 relative to the OH-CH rate for some commonly occurring VOCs. Also given are the median VOC concentrations. Shown for comparison are the relative reaction rates for two VOC species that are emitted by vegetation isoprene and a-piuene. In general, internally bonded olefins are the most reactive, followed ia decreasiag order by terminally bonded olefins, multi alkyl aromatics, monoalkyl aromatics, C and higher paraffins, C2—C paraffins, benzene, acetylene, and ethane. [Pg.370]

Secondary alcohols (C q—for surfactant iatermediates are produced by hydrolysis of secondary alkyl borate or boroxiae esters formed when paraffin hydrocarbons are air-oxidized ia the presence of boric acid [10043-35-3] (19,20). Union Carbide Corporation operated a plant ia the United States from 1964 until 1977. A plant built by Nippon Shokubai (Japan Catalytic Chemical) ia 1972 ia Kawasaki, Japan was expanded to 30,000 t/yr capacity ia 1980 (20). The process has been operated iadustriaHy ia the USSR siace 1959 (21). Also, predominantiy primary alcohols are produced ia large volumes ia the USSR by reduction of fatty acids, or their methyl esters, from permanganate-catalyzed air oxidation of paraffin hydrocarbons (22). The paraffin oxidation is carried out ia the temperature range 150—180°C at a paraffin conversion generally below 20% to a mixture of trialkyl borate, (RO)2B, and trialkyl boroxiae, (ROBO). Unconverted paraffin is separated from the product mixture by flash distillation. After hydrolysis of residual borate esters, the boric acid is recovered for recycle and the alcohols are purified by washing and distillation (19,20). [Pg.460]

Uses. Fluorosulfuric acid serves as catalyst in the alkylation (qv) of branched-chain paraffins (53—58) and aromatic compounds (59), and in the polymeriza tion of monoolefins (60) and rosin (61). Addition of strong Lewis acids, such as SbF, TaF, and NbF, to fluorosulfuric acid markedly increases... [Pg.249]

Isomerization. Isomerization is a catalytic process which converts normal paraffins to isoparaffins. The feed is usually light virgin naphtha and the catalyst platinum on an alumina or zeoflte base. Octanes may be increased by over 30 numbers when normal pentane and normal hexane are isomerized. Another beneficial reaction that occurs is that any benzene in the feed is converted to cyclohexane. Although isomerization produces high quahty blendstocks, it is also used to produce feeds for alkylation and etherification processes. Normal butane, which is generally in excess in the refinery slate because of RVP concerns, can be isomerized and then converted to alkylate or to methyl tert-huty ether (MTBE) with a small increase in octane and a large decrease in RVP. [Pg.185]

PMMA is not affected by most inorganic solutions, mineral oils, animal oils, low concentrations of alcohols paraffins, olefins, amines, alkyl monohahdes and ahphatic hydrocarbons and higher esters, ie, >10 carbon atoms. However, PMMA is attacked by lower esters, eg, ethyl acetate, isopropyl acetate aromatic hydrocarbons, eg, benzene, toluene, xylene phenols, eg, cresol, carboHc acid aryl hahdes, eg, chlorobenzene, bromobenzene ahphatic acids, eg, butyric acid, acetic acid alkyl polyhaHdes, eg, ethylene dichloride, methylene chloride high concentrations of alcohols, eg, methanol, ethanol 2-propanol and high concentrations of alkahes and oxidizing agents. [Pg.262]

Catalysis. As of mid-1995, zeoHte-based catalysts are employed in catalytic cracking, hydrocracking, isomerization of paraffins and substituted aromatics, disproportionation and alkylation of aromatics, dewaxing of distillate fuels and lube basestocks, and in a process for converting methanol to hydrocarbons (54). [Pg.457]

The term naphthenic acid, as commonly used in the petroleum industry, refers collectively to all of the carboxyUc acids present in cmde oil. Naphthenic acids [1338-24-5] are classified as monobasic carboxyUc acids of the general formula RCOOH, where R represents the naphthene moiety consisting of cyclopentane and cyclohexane derivatives. Naphthenic acids are composed predorninandy of aLkyl-substituted cycloaUphatic carboxyUc acids, with smaller amounts of acycHc aUphatic (paraffinic or fatty) acids. Aromatic, olefinic, hydroxy, and dibasic acids are considered to be minor components. Commercial naphthenic acids also contain varying amounts of unsaponifiable hydrocarbons, phenoHc compounds, sulfur compounds, and water. The complex mixture of acids is derived from straight-mn distillates of petroleum, mosdy from kerosene and diesel fractions (see Petroleum). [Pg.509]

The solvent is 28 CC-olefins recycled from the fractionation section. Effluent from the reactors includes product a-olefins, unreacted ethylene, aluminum alkyls of the same carbon number distribution as the product olefins, and polymer. The effluent is flashed to remove ethylene, filtered to remove polyethylene, and treated to reduce the aluminum alkyls in the stream. In the original plant operation, these aluminum alkyls were not removed, resulting in the formation of paraffins (- 1.4%) when the reactor effluent was treated with caustic to kill the catalyst. In the new plant, however, it is likely that these aluminum alkyls are transalkylated with ethylene by adding a catalyst such as 60 ppm of a nickel compound, eg, nickel octanoate (6). The new plant contains a caustic wash section and the product olefins still contain some paraffins ( 0.5%). After treatment with caustic, cmde olefins are sent to a water wash to remove sodium and aluminum salts. [Pg.439]

Wax Cracking. One or more wax-cracked a-olefin plants were operated from 1962 to 1985 Chevron had two such plants at Richmond, California, and Shell had three in Europe. The wax-cracked olefins were of limited commercial value because they contained internal olefins, branched olefins, diolefins, aromatics, and paraffins. These were satisfactory for feed to alkyl benzene plants and for certain markets, but unsatisfactory for polyethylene comonomers and several other markets. Typical distributions were C 33% C q, 7% 25% and 35%. Since both odd and... [Pg.441]

Vista, Huntsman, and other linear alkylben2ene (LAB) producers feed chlorinated paraffins to an alkylation reactor to produce detergent alkylate without prior separation of the unreacted paraffins. Large amounts of paraffins must be recycled in these processes. [Pg.441]

Additioaal uses for higher olefias iaclude the productioa of epoxides for subsequeat coaversioa iato surface-active ageats, alkylatioa of benzene to produce drag-flow reducers, alkylation of phenol to produce antioxidants, oligomeriza tion to produce synthetic waxes (qv), and the production of linear mercaptans for use in agricultural chemicals and polymer stabilizers. Aluminum alkyls can be produced from a-olefias either by direct hydroalumination or by transalkylation. In addition, a number of heavy olefin streams and olefin or paraffin streams have been sulfated or sulfonated and used in the leather (qv) iadustry. [Pg.442]

All lation. The combination of olefins with paraffins to form higher isoparaffins is termed alkylation (qv). Alkylate is a desirable blendstock because it has a relatively high octane number and serves to dilute the total aromatics content. Reduction of the olefins ia gasoline blendstocks by alkylation also reduces tail pipe emissions. In refinery practice, butylenes are routinely alkylated by reaction with isobutane to produce isobutane—octane (26). In some plants, propylene and/or pentylenes (amylenes) are also alkylated (27). [Pg.207]

The alkylation desctibed in this article is the substitution of a hydrogen atom bonded to the carbon atom of a paraffin or aromatic ring by an alkyl group. The alkylations of nitrogen, oxygen, and sulfur are described in separate articles (see Amines Ethers). [Pg.45]

Paraffin alkylation as discussed here refers to the addition reaction of an isoparaffin and an olefin. The desired product is a higher molecular weight paraffin that exhibits a greater degree of branching than either of the reactants. [Pg.45]

Although the alkylation of paraffins can be carried out thermally (3), catalytic alkylation is the basis of all processes in commercial use. Early studies of catalytic alkylation led to the formulation of a proposed mechanism based on a chain of ionic reactions (4—6). The reaction steps include the formation of a light tertiary cation, the addition of the cation to an olefin to form a heavier cation, and the production of a heavier paraffin (alkylate) by a hydride transfer from a light isoparaffin. This last step generates another light tertiary cation to continue the chain. [Pg.45]

Isobutane. Although other isoparaffins can be alkylated, isobutane [75-28-5] is the only paraffin commonly used as a commercial feedstock. [Pg.47]

Future technology developments in paraffin alkylation will be greatly influenced by environmental considerations. The demand for alkylate product will continue to increase because alkylate is one of the most desirable components in modern low emission gasoline formulations. Increased attention will be focused on improving process safety, reducing waste disposal requirements, and limiting the environmental consequences of any process emissions. [Pg.47]

AlClj Alkylation Process. The first step in the AIQ. process is the chlorination of / -paraffins to form primary monochloroparaffin. Then in the second step, the monochloroparaffin is alkylated with benzene in the presence of AIQ. catalyst (75,76). Considerable amounts of indane (2,3-dihydro-lH-indene [496-11-7]) and tetralin (1,2,3,4-tetrahydronaphthalene [119-64-2]) derivatives are formed as by-products because of the dichlorination of paraffins in the first step (77). Only a few industrial plants built during the early 1960s use this technology to produce LAB from linear paraffins. The C q—CC olefins also can be alkylated with benzene using this catalyst system. [Pg.51]

HP Alkylation Process. The most widely used technology today is based on the HE catalyst system. AH industrial units built in the free world since 1970 employ this process (78). During the mid-1960s, commercial processes were developed to selectively dehydrogenate linear paraffins to linear internal olefins (79—81). Although these linear internal olefins are of lower purity than are a olefins, they are more cost-effective because they cost less to produce. Furthermore, with improvement over the years in dehydrogenation catalysts and processes, such as selective hydrogenation of diolefins to monoolefins (82,83), the quaUty of linear internal olefins has improved. [Pg.51]

PC = paraffin column DC = detergent alkylate column VE = vacuum ejector. [Pg.52]

Future Developments. The most recent advance in detergent alkylation is the development of a soHd catalyst system. UOP and Compania Espanola de Petroleos SA (CEPSA) have disclosed the joint development of a fixed-bed heterogeneous aromatic alkylation catalyst system for the production of LAB. Petresa, a subsidiary of CEPSA, has announced plans for the constmction of a 75,000 t/yr LAB plant in Quebec, Canada, that will use the UOP / -paraffin dehydrogenation process and the new fixed-bed alkylation process (85). [Pg.52]


See other pages where Paraffin alkylation is mentioned: [Pg.112]    [Pg.713]    [Pg.112]    [Pg.713]    [Pg.21]    [Pg.208]    [Pg.353]    [Pg.2790]    [Pg.131]    [Pg.456]    [Pg.131]    [Pg.180]    [Pg.264]    [Pg.242]    [Pg.437]    [Pg.441]    [Pg.441]    [Pg.45]    [Pg.45]    [Pg.45]    [Pg.52]    [Pg.218]    [Pg.102]   
See also in sourсe #XX -- [ Pg.5 , Pg.7 ]




SEARCH



Alkylation of Paraffins and Aromatics Edwin K. Jones

Alkylation of paraffins

Olefin paraffin alkylation

© 2024 chempedia.info