Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Bond valences

Ionova I V and Carter E A 1995 Crbital-based direct inversion in the iterative subspace for the generalized valence bond method J. Chem. Phys. 102 1251... [Pg.2356]

Patterson C H and Messmer R P 1990 Bonding and structure in silicon clusters a valence-bond interpretation Phys. Rev. B 42 7530... [Pg.2405]

For this reason, there has been much work on empirical potentials suitable for use on a wide range of systems. These take a sensible functional form with parameters fitted to reproduce available data. Many different potentials, known as molecular mechanics (MM) potentials, have been developed for ground-state organic and biochemical systems [58-60], They have the advantages of simplicity, and are transferable between systems, but do suffer firom inaccuracies and rigidity—no reactions are possible. Schemes have been developed to correct for these deficiencies. The empirical valence bond (EVB) method of Warshel [61,62], and the molecular mechanics-valence bond (MMVB) of Bemardi et al. [63,64] try to extend MM to include excited-state effects and reactions. The MMVB Hamiltonian is parameterized against CASSCF calculations, and is thus particularly suited to photochemistry. [Pg.254]

In practice, each CSF is a Slater determinant of molecular orbitals, which are divided into three types inactive (doubly occupied), virtual (unoccupied), and active (variable occupancy). The active orbitals are used to build up the various CSFs, and so introduce flexibility into the wave function by including configurations that can describe different situations. Approximate electronic-state wave functions are then provided by the eigenfunctions of the electronic Flamiltonian in the CSF basis. This contrasts to standard FIF theory in which only a single determinant is used, without active orbitals. The use of CSFs, gives the MCSCF wave function a structure that can be interpreted using chemical pictures of electronic configurations [229]. An interpretation in terms of valence bond sti uctures has also been developed, which is very useful for description of a chemical process (see the appendix in [230] and references cited therein). [Pg.300]

MMVB is a hybrid force field, which uses MM to treat the unreactive molecular framework, combined with a valence bond (VB) approach to treat the reactive part. The MM part uses the MM2 force field [58], which is well adapted for organic molecules. The VB part uses a parametrized Heisenberg spin Hamiltonian, which can be illustrated by considering a two orbital, two electron description of a sigma bond described by the VB determinants... [Pg.301]

It is useful to represent the polyelectronic wave function of a compound by a valence bond (VB) structure that represents the bonding between the atoms. Frequently, a single VB structure suffices, sometimes it is necessary to use several. We assume for simplicity that a single VB stiucture provides a faithful representation. A common way to write down a VB structure is by the spin-paired determinant, that ensures the compliance with Pauli s principle (It is assumed that there are 2n paired electrons in the system)... [Pg.331]

Oxygen is a colourless gas which condenses to a pale blue liquid, b.p. 90 K, which is markedly paramagnetic indicating the presence of unpaired electrons (p. 229). Simple valence bond theory (as used in this book) would indicate the structure... [Pg.262]

The first point to remark is that methods that are to be incorporated in MD, and thus require frequent updates, must be both accurate and efficient. It is likely that only semi-empirical and density functional (DFT) methods are suitable for embedding. Semi-empirical methods include MO (molecular orbital) [90] and valence-bond methods [89], both being dependent on suitable parametrizations that can be validated by high-level ab initio QM. The quality of DFT has improved recently by refinements of the exchange density functional to such an extent that its accuracy rivals that of the best ab initio calculations [91]. DFT is quite suitable for embedding into a classical environment [92]. Therefore DFT is expected to have the best potential for future incorporation in embedded QM/MD. [Pg.15]

Aqvist, J., Warshel, A. Simulation of enzyme reactions using valence bond force fields and other hybrid quantum/classical approaches. Chem. Rev. 93... [Pg.32]

The concept of connection tablc.s, a.s shown. so far, cannot represent adequately quite a number of molecular structures. Basically, a connection table represents only a single valence bond structure. Thus, any chemical species that cannot he described adequately by a single valence bond (VB) structure with single or multiple bonds between two atom.s is not handled accurately. [Pg.63]

Benzene was probably the fust compound in chemical history where the valence bond concept proved to be insufficient. Localizing the nr-systems, one comes up with two equivalent but different representations. The true bonding in benzene was described as resulting from a resonance between these two representations (Figure 2-46). [Pg.63]

We describe here a new structure representation which extends the valence bond concept by new bond types that account for multi-haptic and electron-deficient bonds. This representation is called Representation Architecture for Molecular Structures by Electron Systems (RAMSES) it tries to incorporate ideas from Molecular Orbital (MO) Theory [8T]. [Pg.64]

Benzene has already been mentioned as a prime example of the inadequacy of a connection table description, as it cannot adequately be represented by a single valence bond structure. Consequently, whenever some property of an arbitrary molecule is accessed which is influenced by conjugation, the other possible resonance structures have to be at least generated and weighted. Attempts have already been made to derive adequate representations of r-electron systems [84, 85]. [Pg.65]

Extended Hiickel theory Generalised valence bond model Hartree-Fock... [Pg.124]

A is a parameter that can be varied to give the correct amount of ionic character. Another way to view the valence bond picture is that the incorporation of ionic character corrects the overemphasis that the valence bond treatment places on electron correlation. The molecular orbital wavefimction underestimates electron correlation and requires methods such as configuration interaction to correct for it. Although the presence of ionic structures in species such as H2 appears coimterintuitive to many chemists, such species are widely used to explain certain other phenomena such as the ortho/para or meta directing properties of substituted benzene compounds imder electrophilic attack. Moverover, it has been shown that the ionic structures correspond to the deformation of the atomic orbitals when daey are involved in chemical bonds. [Pg.145]

One widely used valence bond theory is the generalised valence bond (GVB) method of Goddard and co-workers [Bobrowicz and Goddard 1977]. In the simple Heitler-London treatment of the hydrogen molecule the two orbitals are the non-orthogonal atomic orbitals on the two hydrogen atoms. In the GVB theory the analogous wavefunction is written ... [Pg.145]

Another approach is spin-coupled valence bond theory, which divides the electrons into two sets core electrons, which are described by doubly occupied orthogonal orbitals, and active electrons, which occupy singly occupied non-orthogonal orbitals. Both types of orbital are expressed in the usual way as a linear combination of basis functions. The overall wavefunction is completed by two spin fimctions one that describes the coupling of the spins of the core electrons and one that deals with the active electrons. The choice of spin function for these active electrons is a key component of the theory [Gerratt ef al. 1997]. One of the distinctive features of this theory is that a considerable amount of chemically significant electronic correlation is incorporated into the wavefunction, giving an accuracy comparable to CASSCF. An additional benefit is that the orbitals tend to be... [Pg.145]

T orbital for benzene obtained from spin-coupled valence bond theory. (Figure redrawn from Gerratt ], D L oer, P B Karadakov and M Raimondi 1997. Modem valence bond theory. Chemical Society Reviews 87 100.) figure also shows the two Kekule and three Dewar benzene forms which contribute to the overall wavefunction Kekuleform contributes approximately 40.5% and each Dewar form approximately 6.4%. [Pg.146]

Drowicz F W and W A Goddard IB 1977. The Self-Consistent Field Equations for Generalized Valence Bond and Open-Shell Hartree-Fock Wave Functions. In Schaeffer H F III (Editor). Modem Theoretical Chemistry III, New York, Plenum, pp. 79-127. [Pg.180]

Gerratt J, D L Cooper, P B Karadakov and M Raimondi 1997. Modem Valence Bond Theory. Chemical Society Reviews pp. 87-100. [Pg.181]

Valence bond representation of the hyperconjugation effect which leads to a lengthening of the C—H bond icetaldeyde. [Pg.198]

Aqvist J and A Warshel 1993. Simulation of Enzyme Reactions Using Valence Bond Force Fields a Other Hybrid Quantum/Classical Approaches. Chemical Reviews 93 2523-2544. [Pg.649]


See other pages where Bond valences is mentioned: [Pg.130]    [Pg.2165]    [Pg.2166]    [Pg.2624]    [Pg.308]    [Pg.41]    [Pg.18]    [Pg.144]    [Pg.144]    [Pg.145]    [Pg.145]    [Pg.254]    [Pg.266]    [Pg.268]    [Pg.631]    [Pg.632]    [Pg.632]   
See also in sourсe #XX -- [ Pg.464 , Pg.465 , Pg.466 , Pg.468 , Pg.469 , Pg.470 , Pg.471 ]

See also in sourсe #XX -- [ Pg.63 ]

See also in sourсe #XX -- [ Pg.380 , Pg.384 ]

See also in sourсe #XX -- [ Pg.17 ]

See also in sourсe #XX -- [ Pg.207 ]

See also in sourсe #XX -- [ Pg.6 , Pg.16 , Pg.17 , Pg.18 , Pg.19 , Pg.20 , Pg.21 ]

See also in sourсe #XX -- [ Pg.122 ]

See also in sourсe #XX -- [ Pg.308 , Pg.343 , Pg.583 , Pg.587 , Pg.595 ]

See also in sourсe #XX -- [ Pg.73 ]

See also in sourсe #XX -- [ Pg.464 , Pg.465 , Pg.466 , Pg.468 , Pg.469 , Pg.470 , Pg.471 ]

See also in sourсe #XX -- [ Pg.2 , Pg.14 , Pg.15 ]

See also in sourсe #XX -- [ Pg.508 ]

See also in sourсe #XX -- [ Pg.167 , Pg.259 ]

See also in sourсe #XX -- [ Pg.2 , Pg.169 , Pg.173 , Pg.253 , Pg.254 , Pg.265 , Pg.272 , Pg.290 ]

See also in sourсe #XX -- [ Pg.210 ]

See also in sourсe #XX -- [ Pg.91 , Pg.92 , Pg.103 , Pg.115 , Pg.118 , Pg.124 , Pg.146 , Pg.149 , Pg.161 , Pg.165 , Pg.177 , Pg.180 , Pg.196 , Pg.201 ]

See also in sourсe #XX -- [ Pg.187 ]

See also in sourсe #XX -- [ Pg.97 ]

See also in sourсe #XX -- [ Pg.110 ]

See also in sourсe #XX -- [ Pg.35 ]

See also in sourсe #XX -- [ Pg.31 ]

See also in sourсe #XX -- [ Pg.132 ]




SEARCH



© 2024 chempedia.info