Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Adsorption liquid bulk separations

In contrast to trace impurity removal, the use of adsorption for bulk separation in the liquid phase on a commercial scale is a relatively recent development. The first commercial operation occurred in 1964 with the advent of the UOP Molex process for recovery of high purity / -paraffins (6—8). Since that time, bulk adsorptive separation of liquids has been used to solve a broad range of problems, including individual isomer separations and class separations. The commercial availability of synthetic molecular sieves and ion-exchange resins and the development of novel process concepts have been the two significant factors in the success of these processes. This article is devoted mainly to the theory and operation of these Hquid-phase bulk adsorptive separation processes. [Pg.291]

In contrast to trace impurity removal, the use of adsorption for bulk separation in the liquid phase on a commercial scale is a relatively recent development. This article is devoted mainly lo the theory and operation of these liquid-phase bulk adsorptive separation processes. [Pg.40]

The traditional application of adsorption in the process industries has been as a means of removing trace impurities from gas or liquid streams. Examples include the removal of H2S from hydrocarbon streams before processing, the drying and removal of C02 from natural gas, and the removal of organic compounds from waste water. In these examples the adsorbed component has little value and is generally not recovered. Such processes are generally referred to as purification processes, as distinct from bulk separations, in which a mixture is separated into two (or more) streams, each enriched in a valuable component, which is recovered. The application of adsorption to bulk separations is a more recent development that was stimulated to a significant extent by the rapid... [Pg.30]

Industrial examples of adsorbent separations shown above are examples of bulk separation into two products. The basic principles behind trace impurity removal or purification by liquid phase adsorption are similar to the principles of bulk liquid phase adsorption in that both systems involve the interaction between the adsorbate (removed species) and the adsorbent. However, the interaction for bulk liquid separation involves more physical adsorption, while the trace impurity removal often involves chemical adsorption. The formation and breakages of the bonds between the adsorbate and adsorbent in bulk liquid adsorption is weak and reversible. This is indicated by the heat of adsorption which is <2-3 times the latent heat of evaporahon. This allows desorption or recovery of the adsorbate from the adsorbent after the adsorption step. The adsorbent selectivity between the two adsorbates to be separated can be as low as 1.2 for bulk Uquid adsorptive separation. In contrast, with trace impurity removal, the formation and breakages of the bonds between the adsorbate and the adsorbent is strong and occasionally irreversible because the heat of adsorption is >2-3 times the latent heat of evaporation. The adsorbent selectivity between the impurities to be removed and the bulk components in the feed is usually several times higher than the adsorbent selectivity for bulk Uquid adsorptive separation. [Pg.175]

ADSORPTION is the adhesion or retention of a thin layer of molecules of a gas or liquid mixture brought into contact with a solid surface resulting from the force held at the surface. Because the surface may exhibit different affinities for the various components of a fluid, the composition of the adsorbed layer generally differs from that of the bulk fluid. This phenomenon offers a straightforward means of purification (removal of undesirable components from a fluid mixture) as well as a potentially useful method of bulk separation (separation of a mixture into two or more streams of enhanced value). [Pg.30]

Liquid Adsorption. Adsorption takes place selectively because of (1) polarity differences between adsorbate and unadsorbed liquid, or (2) differences in size and structural characteristics of molecules. In the first category we may mention activated carbon, in the second one the molecular sieves. Liquid adsorption is suitable for both recovery of small amounts from dilute solutions, and for bulk separations. Purification is feasible with very selective adsorbent. Recovery of adsorbate and regeneration of the adsorbent may be performed by (1) Thermal Swing Adsorption, (2) Pressure Swing Adsorption, (3) inert-purge swing, or (4) displacement desorption. [Pg.275]

Is this operation of flxed-bed adsorption with bulk liquid phase flow perpendicular to the direction of the chemical potential gradient force from the liquid to the solid beneficial for separation when compared with just plain equilibration between the feed liquid and the adsorbent without any bulk flow In a given direction ... [Pg.495]

Examples of the former are the drying of air or natural gas, the removal of solvent vapours from air streams, the sweetening of natural gas, the removal of diethylbenzene from aromatics and the purification of liquid organic compounds. An example of the bulk separation of components by thermal swing adsorption is the extraction of water from ethanol. [Pg.204]

To analyze these data, the well-known Gibbs adsorption equation (Chattoraj and Birdi, 1984 Birdi, 1989) has to be used. A liquid column containing i number of components is shown in Figure 3.14, according to the Gibbs treatment of two bulk phases, that is, a and (3, separated by the interfacial region AA BB. ... [Pg.55]

Adsorption is a physical phenomenon in which some components adsorbates) in a fluid (liquid or gas) move to, and accumulate on, the surface of an appropriate solid adsorbent) that is in contact with the fluid. With the use of suitable adsorbents, desired components or contaminants in fluids can be separated. In bioprocesses, the adsorption of a component in a liquid is widely performed by using a variety of adsorbents, including porous charcoal, silica, polysaccharides, and synthetic resins. Such adsorbents of high adsorption capacities usually have very large surface areas per unit volume. The adsorbates in the fluids are adsorbed at the adsorbent surfaces due to van der Waals, electrostatic, biospecific, or other interactions, and thus become separated from the bulk of the fluid. In practice, adsorption can be performed either batchwise in mixing tanks, or continuously in fixed-bed or fluidized-bed adsorbers. In adsorption calculations, both equilibrium relationships and adsorption rates must be considered. [Pg.165]

New applications of zeolite adsorption developed recently for separation and purification processes are reviewed. Major commercial processes are discussed in areas of hydrocarbon separation, drying gases and liquids, separation and purification of industrial streams, pollution control, and nonregenerative applications. Special emphasis is placed on important commercial processes and potentially important applications. Important properties of zeolite adsorbents for these applications are adsorption capacity and selectivity, adsorption and desorption rate, physical strength and attrition resistance, low catalytic activity, thermal-hydrothermal and chemical stabilityy and particle size and shape. Apparent bulk density is important because it is related to adsorptive capacity per unit volume and to the rate of adsorption-desorption. However, more important factors controlling the raJtes are crystal size and macropore size distribution. [Pg.311]

In the various sections of this chapter, I will briefly describe the major characteristics of FT-IR, and then relate the importance of these characteristics to physiochemical studies of colloids and interfaces. This book is divided into two major areas studies of "bulk" colloidal aggregates such as micelles, surfactant gels and bilayers and studies of interfacial phenomena such as surfactant and polymer adsorption at the solid-liquid interface. This review will follow the same organization. A separate overview chapter addresses the details of the study of interfaces via the attenuated total reflection (ATR) and grazing angle reflection techniques. [Pg.4]

The mode of interaction between the sample components and the two phases can be classified into two types, although many separation processes are combinations of both. If the sample is attracted to the surfaces of the phases, commonly to the surface of a solid stationary phase, the process is called adsorption. Alternatively, if the sample diffuses into the interior of the stationary phase—for example, into the bulk of a stationary liquid—chromatographers call the process partition. Actually, absorption seems to be a better name for this process because we can then speak of... [Pg.11]

The use of cyclodextrins as the mobile phase components which impart stereoselectivity to reversed phase high performance liquid chromatography (RP-HPLC) systems are surveyed. The exemplary separations of structural and geometrical isomers are presented as well as the resolution of some enantiomeric compounds. A simplified scheme of the separation process occurring in RP-HPLC system modified by cyclodextrin is discussed and equations which relate the capacity factors of solutes to cyclodextrin concentration are given. The results are considered in the light of two phenomena influencing separation processes adsorption of inclusion complexes on stationary phase and complexation of solutes in the bulk mobile phase solution. [Pg.218]

What is the specific feature in the reaction at the liquid/liquid interface The catalytic role of the interface is of primary importance in solvent extraction and other two-phase reaction kinetics. In solvent extraction kinetics, the adsorption of the extractant or an intermediate complex at the liquid/liquid interface significantly increased the extraction rate. Secondly, interfacial accumulation or concentration of adsorbed molecules, which very often results in interfacial aggregation, is an important role played by the interface. This is because the interface is available to be saturated by an extractant or mehd complex, even if the concentration of the extractant or metal complex in the bulk phase is very low. Molecular recognition or separation by the interfacial aggregation is the third specific feature of the interfacial reaction and is thought to be closely related to the biological functions of cell membranes. In addition, molecular diffusion of solute and solvent molecules at the liquid/liquid interface has to be elucidated in order to understand the molecular mobility at the interface. In this chapter, some examples of specific... [Pg.206]


See other pages where Adsorption liquid bulk separations is mentioned: [Pg.246]    [Pg.96]    [Pg.41]    [Pg.2]    [Pg.8]    [Pg.31]    [Pg.581]    [Pg.38]    [Pg.4]    [Pg.289]    [Pg.1882]    [Pg.170]    [Pg.238]    [Pg.425]    [Pg.28]    [Pg.107]    [Pg.464]    [Pg.623]    [Pg.270]    [Pg.173]    [Pg.468]    [Pg.43]    [Pg.152]    [Pg.551]    [Pg.552]    [Pg.597]    [Pg.409]    [Pg.25]    [Pg.238]    [Pg.112]    [Pg.192]    [Pg.97]    [Pg.10]    [Pg.299]   
See also in sourсe #XX -- [ Pg.690 ]

See also in sourсe #XX -- [ Pg.690 ]

See also in sourсe #XX -- [ Pg.690 ]




SEARCH



Adsorption: liquid separation

Adsorptive separation

Bulk liquid

Bulk separation

Liquid adsorption

Liquids, adsorptive separation

Separation adsorption

© 2024 chempedia.info