Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Liquid-phase adsorptions

Granular Activated Carbon (GAC) Adsorption (Liquid Phase) page -... [Pg.443]

Description of granular activated carbon (GAC) adsorption (liquid phase) remediation technology used to clean up pumped ground water contaminated with volatile/semi-volatile organics and PCBs. http //erb. nfesc. navy. mil/restoration/te. [Pg.443]

In all cases, at increasing equilibrium pressure the adsorption approaches the adsorptive liquid phase, and the adsorption enthalpy approaches the adsorptive latent enthalpy of liquefaction AlH, as typically occurs for physical adsorption at [28, 56, 85, 104],... [Pg.39]

Nearly every chemical manufacturiag operation requites the use of separation processes to recover and purify the desired product. In most circumstances, the efficiency of the separation process has a significant impact on both the quality and the cost of the product (1). Liquid-phase adsorption has long been used for the removal of contaminants present at low concentrations in process streams. In most cases, the objective is to remove a specific feed component alternatively, the contaminants are not well defined, and the objective is the improvement of feed quality defined by color, taste, odor, and storage stability (2-5) (see Wastes, industrial Water, industrial watertreati nt). [Pg.291]

In contrast to trace impurity removal, the use of adsorption for bulk separation in the liquid phase on a commercial scale is a relatively recent development. The first commercial operation occurred in 1964 with the advent of the UOP Molex process for recovery of high purity / -paraffins (6—8). Since that time, bulk adsorptive separation of liquids has been used to solve a broad range of problems, including individual isomer separations and class separations. The commercial availability of synthetic molecular sieves and ion-exchange resins and the development of novel process concepts have been the two significant factors in the success of these processes. This article is devoted mainly to the theory and operation of these Hquid-phase bulk adsorptive separation processes. [Pg.291]

Activated carbons for use in Hquid-phase appHcations differ from gas-phase carbons primarily in pore size distribution. Liquid-phase carbons have significantly more pore volume in the macropore range, which permits Hquids to diffuse more rapidly into the mesopores and micropores (69). The larger pores also promote greater adsorption of large molecules, either impurities or products, in many Hquid-phase appHcations. Specific-grade choice is based on the isotherm (70,71) and, in some cases, bench or pilot scale evaluations of candidate carbons. [Pg.533]

Liquid-phase adsorption methods are widely used for quaUty control and specification purposes. The adsorption of iodine from potassium iodide solution is the standard ASTM method D1510-83 (2). The surface area is expressed as the iodine number whose units are milligrams of iodine adsorbed per gram of carbon. It is quite fortuitous that the values of iodine numbers turn out to be about the same as the values for surface areas in square meters per gram by nitrogen adsorption for nonporous carbon blacks. [Pg.548]

Ordinary diffusion involves molecular mixing caused by the random motion of molecules. It is much more pronounced in gases and Hquids than in soHds. The effects of diffusion in fluids are also greatly affected by convection or turbulence. These phenomena are involved in mass-transfer processes, and therefore in separation processes (see Mass transfer Separation systems synthesis). In chemical engineering, the term diffusional unit operations normally refers to the separation processes in which mass is transferred from one phase to another, often across a fluid interface, and in which diffusion is considered to be the rate-controlling mechanism. Thus, the standard unit operations such as distillation (qv), drying (qv), and the sorption processes, as well as the less conventional separation processes, are usually classified under this heading (see Absorption Adsorption Adsorption, gas separation Adsorption, liquid separation). [Pg.75]

Material balances, often an energy balance, and occasionally a momentum balance are needed to describe an adsorption process. These are written in various forms depending on the specific application and desire for simplicity or rigor. Reasonably general material balances for various processes are given below. An energy balance is developed for a fixea bed for gas-phase application and simphfied for liquid-phase application. Momentum balances for pressure drop in packed beds are given in Sec. 6. [Pg.1509]

Adsorption This is the most widely used of the physical-chemical treatment processes. It is used primarily for the removal of soluble organics with activated carbon serving as the adsorbent. Most liquid-phase-activated carbon adsorption reactions follow a Freundlich Isotherm [Eq. (25-21)]. [Pg.2226]

Fig. 6. Breakthrough curves for aqueous acetone (10 mg 1" in feed) flowing through exnutshell granular active carbon, GAC, and PAN-based active carbon fibers, ACF, in a continuous flow reactor (see Fig. 5) at 10 ml min" and 293 K [64]. C/Cq is the outlet concentration relative to the feed concentration. Reprinted from Ind. Eng. Chem. Res., Volume 34, Lin, S. H. and Hsu, F. M., Liquid phase adsorption of organic compounds by granular activated carbon and activated carbon fibers, pp. 2110-2116, Copyright 1995, with permission from the American Chemical Society. Fig. 6. Breakthrough curves for aqueous acetone (10 mg 1" in feed) flowing through exnutshell granular active carbon, GAC, and PAN-based active carbon fibers, ACF, in a continuous flow reactor (see Fig. 5) at 10 ml min" and 293 K [64]. C/Cq is the outlet concentration relative to the feed concentration. Reprinted from Ind. Eng. Chem. Res., Volume 34, Lin, S. H. and Hsu, F. M., Liquid phase adsorption of organic compounds by granular activated carbon and activated carbon fibers, pp. 2110-2116, Copyright 1995, with permission from the American Chemical Society.
In a separate study using the JKR technique, Chaudhury and Owen [48,49] attempted to understand the correlation between the contact adhesion hysteresis and the phase state of the monolayers films. In these studies, Chaudhury and Owen prepared self-assembled layers of hydrolyzed hexadecyltrichlorosilane (HTS) on oxidized PDMS surfaces at varying degrees of coverage by vapor phase adsorption. The phase state of the monolayers changes from crystalline (solidlike) to amoiphous (liquid-like) as the surface coverage (0s) decreases. It was found that contact adhesion hysteresis was the highest for the most closely packed... [Pg.102]

A single-column system for liquid-phase carhon adsorption is used in situations where the following conditions prevail laboratory testing has indieated that the breakthrough curve will be steep the extended lifetime of the earbon at normal operating conditions results in minor replacement or regeneration eosts the eapital... [Pg.277]

The following are some of the typical industrial applications for liquid-phase carbon adsorption. Generally liquid-phase carbon adsorbents are used to decolorize or purify liquids, solutions, and liquefiable materials such as waxes. Specific industrial applications include the decolorization of sugar syrups the removal of sulfurous, phenolic, and hydrocarbon contaminants from wastewater the purification of various aqueous solutions of acids, alkalies, amines, glycols, salts, gelatin, vinegar, fruit juices, pectin, glycerol, and alcoholic spirits dechlorination the removal of... [Pg.279]

Two other methods worth discussing are wet air oxidation and regeneration by steam. Wet oxidation may be defined as a process in which a substance in aqueous solution or suspension is oxidized by oxygen transferred from a gas phase in intimate contact with the liquid phase. The substance may be organic or inorganic in nature. In this broad definition, both the well known oxidation of ferrous salts to ferric salts by exposure of a solution to air at room temperature and the adsorption of oxygen by alkaline pyrogallol in the classical Orsat gas analysis would be considered wet oxidations. [Pg.318]

Filter aids may be applied in one of two ways. The first method involves the use of a precoat filter aid, which can be applied as a thin layer over the filter before the suspension is pumped to the apparatus. A precoat prevents fine suspension particles from becoming so entangled in the filter medium that its resistance becomes exces-sive. In addition it facilitates the removal of filter cake at the end of the filtration cycle. The second application method involves incorporation of a certain amount of the material with the suspension before introducing it to the filter. The addition of filter aids increases the porosity of the sludge, decreases its compressibility, and reduces the resistance of the cake. In some cases the filter aid displays an adsorption action, which results in particle separation of sizes down to 0.1 /i. The adsorption ability of certain filter aids, such as bleached earth and activated charcoals, is manifest by a decoloring of the suspension s liquid phase. This practice is widely used for treating fats and oils. The properties of these additives are determined by the characteristics... [Pg.106]

We wUl now touch upon some of these factors. First, let s look at what we mean by system isotherm. Freundlich liquid phase isotherm studies can be used to establish the adsorptive capacity of activated carbon over a range of different concentrations. Under standard conditions, the adsorptive capacity of activated carbon increases as the concentration increases, until we reach a point of maximum saturation capacity. An example of an isotherm for phenol is shown in Figure 8. [Pg.412]

The Freundlich liquid phase isotherm can be used to determine the effect of solubility on the adsorptive capacity of activated carbon over a range of different concentrations. Phenol is highly soluble due to its polar nature whilst, in comparison, tetrachloroethylene (PCE) has a low solubility due to being non-polar. In the isotherms illustrated, the concentration of phenol is low relative to its solubility limit and consequently, the adsorptive capacity peaks at 18% maximum (see Figure 9). In comparison the concentration of tetrachloroethylene is relatively close to its solubility limit and, accordingly, the adsorptive capacity is exceptionally good. [Pg.413]

Applications of carbon adsorption go far beyond conventional water treatment applications which we will discuss in a general sense shortly. Table 8 provides a summary of the key applications of carbon adsorption systems for liquid phase applications. [Pg.415]

Table 8. Liquid Phase Applications of Carbon Adsorption. Table 8. Liquid Phase Applications of Carbon Adsorption.

See other pages where Liquid-phase adsorptions is mentioned: [Pg.49]    [Pg.447]    [Pg.399]    [Pg.49]    [Pg.447]    [Pg.399]    [Pg.97]    [Pg.91]    [Pg.578]    [Pg.642]    [Pg.571]    [Pg.51]    [Pg.533]    [Pg.1312]    [Pg.1510]    [Pg.1516]    [Pg.1540]    [Pg.1541]    [Pg.1545]    [Pg.2014]    [Pg.114]    [Pg.277]    [Pg.277]    [Pg.279]    [Pg.279]    [Pg.302]    [Pg.303]    [Pg.138]    [Pg.405]    [Pg.418]    [Pg.423]   
See also in sourсe #XX -- [ Pg.206 ]

See also in sourсe #XX -- [ Pg.506 , Pg.513 , Pg.515 ]

See also in sourсe #XX -- [ Pg.546 , Pg.548 , Pg.549 ]

See also in sourсe #XX -- [ Pg.2 , Pg.4 , Pg.7 , Pg.41 , Pg.42 , Pg.130 , Pg.228 , Pg.231 , Pg.232 , Pg.328 , Pg.331 , Pg.350 , Pg.366 , Pg.378 ]

See also in sourсe #XX -- [ Pg.506 , Pg.513 , Pg.515 ]

See also in sourсe #XX -- [ Pg.506 , Pg.513 , Pg.515 ]

See also in sourсe #XX -- [ Pg.506 , Pg.513 , Pg.515 ]

See also in sourсe #XX -- [ Pg.121 ]




SEARCH



Adsorption equipment liquid phase process

Adsorption from liquid phase

Adsorption from the Liquid Phase

Adsorption-desorption process liquid phase applications

Adsorptive liquid phase

Adsorptive liquid phase

Application liquid-phase adsorption

Isotherms for the Description of Adsorption from Liquid Phase

Liquid adsorption

Liquid phase carbon adsorption

Liquid-phase adsorption studies

Liquid-phase adsorptions acetic acid adsorption

Liquid-phase adsorptions adsorbent characteristics

Liquid-phase adsorptions adsorptive characteristics

Liquid-phase adsorptions factors, controlling

Liquid-phase adsorptions from dilute solutions

Liquid-phase adsorptions inorganic solutes adsorption

Liquid-phase adsorptions iodine adsorption

Liquid-phase adsorptions ionic strength

Liquid-phase adsorptions organic solutes adsorption

Liquid-phase adsorptions solutions

© 2024 chempedia.info