Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Liquids, adsorptive separation

The most commonly employed crystalline materials for liquid adsorptive separations are zeolite-based structured materials. Depending on the specific components and their structural framework, crystalline materials can be zeoUtes (silica, alumina), silicalite (silica) or AlPO-based molecular sieves (alumina, phosphoms oxide). Faujasites (X, Y) and other zeolites (A, ZSM-5, beta, mordenite, etc.) are the most popular materials. This is due to their narrow pore size distribution and the ability to tune or adjust their physicochemical properties, particularly their acidic-basic properties, by the ion exchange of cations, changing the Si02/Al203 ratio and varying the water content. These techniques are described and discussed in Chapter 2. By adjusting the properties almost an infinite number of zeolite materials and desorbent combinations can be studied. [Pg.191]

Silicalite is another crystaUine material whose use in liquid adsorptive separation is found in the surveys. Applications for siHcaHte are noted in categories 1... [Pg.191]

The coimnerdal liquid adsorptive separation process of Ciq-Ch -olefins from Cio-Ci4 n-paraffins is another unique example of how zeolite adsorption can be applied. As shown in Table 6.1, distillation is not an option to separate C10-C14 olefins from Ciq-Cu paraffins because of their close boiling points. In this case, the UOP Olex process using NaX adsorbent is used to separate Ciq-Cm olefins from Cio-Ci4 paraffins. [Pg.205]

In the chromatographic liquid adsorptive separation process, the adsorption and desorption processes must occur simultaneously. After the desorption step, both the rejected product (product with lower selectivity, resulting in less adsorption by adsorbent) and the extracted product (product with higher selectivity, resulting in strong adsorption by adsorbent) contain desorbent In general, the desorbent is recovered by fractionation or evaporation and recycled back into the system. [Pg.207]

Ba-Modenite s selectivity to MX is higher than OX, but the opposite is true for BaY. This reversal in selectivity is a result of differences in adsorbent framework characteristics mordenite has higher acid strength compared to Y zeolite. Adsorption and desorption rates of xylenes are expected to be faster in BaY compared to Ba-Mordenite because Mordenite is a one-dimensional channel system while Y zeoUte is a three-dimensional channel. With the reason stated, a three-dimensional channel ZeoUte is the preferred mass separating agent of choice compared to one-or two-dimensional channels for the liquid adsorption separation. [Pg.212]

Chapter 7 gives a review of the technology and applications of zeolites in liquid adsorptive separation of petrochemical aromatic hydrocarbons. The application of zeolites to petrochemical aromatic production may be the area where zeolites have had their largest positive economic impact, accounting for the production of tens of millions of tonnes of high-value aromatic petrochemicals annually. The nonaromatic hydrocarbon liquid phase adsorption review in Chapter 8 contains both general process concepts as well as sufficient individual process details for one to understand both commercially practiced and academic non-aromatic separations. [Pg.626]

One application of the grand canonical Monte Carlo simulation method is in the study ol adsorption and transport of fluids through porous solids. Mixtures of gases or liquids ca separated by the selective adsorption of one component in an appropriate porous mate The efficacy of the separation depends to a large extent upon the ability of the materit adsorb one component in the mixture much more strongly than the other component, separation may be performed over a range of temperatures and so it is useful to be to predict the adsorption isotherms of the mixtures. [Pg.457]

In contrast to trace impurity removal, the use of adsorption for bulk separation in the liquid phase on a commercial scale is a relatively recent development. The first commercial operation occurred in 1964 with the advent of the UOP Molex process for recovery of high purity / -paraffins (6—8). Since that time, bulk adsorptive separation of liquids has been used to solve a broad range of problems, including individual isomer separations and class separations. The commercial availability of synthetic molecular sieves and ion-exchange resins and the development of novel process concepts have been the two significant factors in the success of these processes. This article is devoted mainly to the theory and operation of these Hquid-phase bulk adsorptive separation processes. [Pg.291]

Of these five methods all but pressure-swing distillation can also be used to separate low volatiUty mixtures and all but reactive distillation are discussed herein. It is also possible to combine distillation and other separation techniques such as Hquid—Hquid extraction (see Extraction, liquid-liquid), adsorption (qv), melt crystallization (qv), or pervaporation to complete the separation of azeotropic mixtures. [Pg.181]

Extraction (discussed in Chapter 5) uses the selective adsorption of a component in a liquid to separate specific molecules from a stream. In application extraction may be coupled with its cousins, extractive distillation and azeotropic distillation, to improve extraction efficiency. Typical refinery extraction applications involve aromatics recovery (UDEX) and lubricants processing (furfural, NMP). Extractive distillation and azeotropic distillation are rarely employed in a refinery. The only... [Pg.242]

Because p-xylene is the most valuable isomer for producing synthetic fibers, it is usually recovered from the xylene mixture. Fractional crystallization used to be the method for separating the isomers, but the yield was only 60%. Currently, industry uses continuous liquid-phase adsorption separation processes.The overall yield of p-xylene is increased... [Pg.39]

Equation (1) merely states that the general distribution law applies to the system and that the adsorption isotherm is linear. At the concentrations normally employed in liquid chromatographic separations this will be true. [Pg.18]

The upper curve shows the adsorption isotherm that normally occurs in liquid chromatography separations where the concentration of solute in the system is very low. The isotherm is linear and thus the distribution coefficient is constant at all concentrations of solute in either phase. It follows that as the peak velocity is inversely related to the distribution coefficient, all solute concentrations travel at the same velocity through the column and the peak is symmetrical. [Pg.113]

Adsorption, a surface phenomenon, is the basis of many gas or liquid mixture separation and purification methods. It is also the basis of adsorption chromatographic methods used for the analysis of complex mixtures. The knowledge of adsorption mechaiusms is useful in choosing the suitable systems providing optimum separation. [Pg.87]

Mori, S., Separation and detection of styrene-alkyl methacrylate and ethyl methacrylate-butyl methacrylate copolymers by liquid adsorption chromatography using a dichloroethane mobile phase and a UV detector, J. Chromatogr., 541, 375, 1991. [Pg.368]

The vacuum extraction process involves using vapor extraction wells alone or in combination with air injection wells. Vacuum blowers are used to create the movement of air through the soil. The air flow strips the VOCs from the soil and carries them to the surface. Figure 18.14 shows the flow diagram for such a process. During extraction, water may also be extracted along with vapor. The mixture should be sent to a liquid-vapor separator. The separation process results in both liquid and vapor residuals that require further treatment. Carbon adsorption is used to treat the vapor and water streams, leaving clean water and air for release, and spent GAC for reuse or disposal. Air emissions from the system are typically controlled by adsorption of the volatiles onto activated carbon, by thermal destruction, or by condensation. [Pg.735]

Selective transfer of material in sub-microgram to milligram quantities between a solid sorbent and a liquid phase separations depend on different relative affinities for the two phases based on adsorption, size or charge selectivity achieved by pH control, solvent composition and surface chemistry of the sorbent. [Pg.70]

Fructose separation adsorbents, 7 587t liquid adsorption, 7 665, 674 with zeolite KX, 7 610 Fructosyloligosaccharides (FOS), 23 480 Fruit(s)... [Pg.383]

Millson [113] investigated components of sewage sludge and found elementary sulphur in the hydrocarbon fractions eluted from liquid adsorption columns. By using a solid adsorbent such as alumina, silica gel, or Florisil, and heptane as eluent, the sulphur could be separated from weakly adsorbed hydrocarbons, e.g. squalene or biphenyl, but not from more strongly adsorbed hydrocarbons such as phenyldodecane. [Pg.348]

Industrial adsorption separation processes for liquids are most successful when the species involved have very close boiling points, making distillation expensive or even impossible or are thermally sensitive at convenient distillation temperatures. [Pg.174]

Industrial examples of adsorbent separations shown above are examples of bulk separation into two products. The basic principles behind trace impurity removal or purification by liquid phase adsorption are similar to the principles of bulk liquid phase adsorption in that both systems involve the interaction between the adsorbate (removed species) and the adsorbent. However, the interaction for bulk liquid separation involves more physical adsorption, while the trace impurity removal often involves chemical adsorption. The formation and breakages of the bonds between the adsorbate and adsorbent in bulk liquid adsorption is weak and reversible. This is indicated by the heat of adsorption which is <2-3 times the latent heat of evaporahon. This allows desorption or recovery of the adsorbate from the adsorbent after the adsorption step. The adsorbent selectivity between the two adsorbates to be separated can be as low as 1.2 for bulk Uquid adsorptive separation. In contrast, with trace impurity removal, the formation and breakages of the bonds between the adsorbate and the adsorbent is strong and occasionally irreversible because the heat of adsorption is >2-3 times the latent heat of evaporation. The adsorbent selectivity between the impurities to be removed and the bulk components in the feed is usually several times higher than the adsorbent selectivity for bulk Uquid adsorptive separation. [Pg.175]

Guo, G., Long, Y., and Sun, Y. (2001) Hydrophobic silicalite method for liquid-phase selective adsorption, separation and mixing of dichlorobenzene. C.N. Patent 1,315,217. [Pg.193]

Palkhiwala, A.G., lin, Y.H., Perlmutter, D.D., and Olson, D.H. (1999) Liquid phase separation of polar hydrocarbons from light aromatics using zeolites. Adsorption, 5, 399 07. [Pg.201]

This chapter addresses the fundamentals of zeolite separation, starting with (i) impacts of adsorptive separation, a description of liquid phase adsorption, (ii) tools for adsorption development such as isotherms, pulse and breakthrough tests and (iii) requirements for appropriate zeolite characteristics in adsorption. Finally, speculative adsorption mechanisms are discussed. It is the author s intention that this chapter functions as a bridge to connect the readers to Chapters 7 and 8, Liquid Industrial Aromatics Adsorptive Separation and Liquid Industrial Non-Aromatics Adsorptive Separation, respectively. The industrial mode of operation, the UOP Sorbex technology, is described in Chapters 7 and 8. [Pg.203]

When developing a liquid phase adsorptive separation process, a laboratory pulse test is typically used as a tool to search for a suitable adsorbent and desorbent combination for a particular separation. The properties of the suitable adsorbent, such as type of zeolite, exchange cation and adsorbent water content, are a critical part of the study. The desorbent, temperature and liquid flow circulation are also critical parameters that can be obtained from the pulse test. The pulse test is not only a critical tool for developing the equilibrium-selective adsorption process it is also an essential tool for other separation process developments such as rate-selective adsorption, shape-selective adsorption, ion exchange and reactive adsorption. [Pg.209]

Another critical variable in liquid phase adsorptive separation is the operating temperature. Liquid phase adsorption must be operated at a temperature that... [Pg.220]

The Parex, Toray Aromax and Axens Eluxyl processes are the three adsorptive liquid technologies for the separation and purification of p-xylene practiced on a large scale today. The MX Sorbex process is the only liquid adsorptive process for the separation and purification of m-xylene practiced on an industrial scale. We now consider a few other liquid adsorptive applications using Sorbex technology for aromatics separation that have commercial promise but have not found wide application. [Pg.243]

Expansion of Sorbex technology to the production of m-xylene shows how the process concept can be used for multiple applications in separations that cannot be performed by other means. One can expect that, as demand for new, difficult to separate aromatics increases, the simulated moving bed liquid adsorption processes can provide a means for production. [Pg.245]


See other pages where Liquids, adsorptive separation is mentioned: [Pg.249]    [Pg.249]    [Pg.459]    [Pg.449]    [Pg.361]    [Pg.450]    [Pg.427]    [Pg.80]    [Pg.161]    [Pg.261]    [Pg.267]    [Pg.190]    [Pg.115]    [Pg.86]    [Pg.714]    [Pg.439]    [Pg.87]    [Pg.249]    [Pg.250]    [Pg.252]    [Pg.254]    [Pg.256]   
See also in sourсe #XX -- [ Pg.174 ]




SEARCH



Adsorption liquid bulk separations

Adsorption liquid-separation system

Adsorption: liquid separation

Adsorption: liquid separation

Adsorptive separation

Homogeneous separation adsorption, liquid

Liquid Industrial Non-Aromatics Adsorptive Separations

Liquid adsorption

Liquid adsorption acid separation

Liquid adsorptive separation, industrial

Separation adsorption

UOP ADSORPTION,LIQUID SEPARATION] (Vol

Zeolites ADSORPTION,LIQUID SEPARATION]

© 2024 chempedia.info