Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Attrition resistance

Physical Properties. Physical properties of importance include particle size, density, volume fraction of intraparticle and extraparticle voids when packed into adsorbent beds, strength, attrition resistance, and dustiness. These properties can be varied intentionally to tailor adsorbents to specific apphcations (See Adsorption liquid separation Aluminum compounds, aluminum oxide (alumna) Carbon, activated carbon Ion exchange Molecular sieves and Silicon compounds, synthetic inorganic silicates). [Pg.278]

The commercialization by Kureha Chemical Co. of Japan of a new, highly attrition-resistant, activated-carbon adsorbent as Beaded Activated Carbon (BAC) allowed development of a process employing fluidized-bed adsorption and moving-bed desorption for removal of volatile organic carbon compounds from air. The process has been marketed as GASTAK in Japan and as PURASIV HR (91) in the United States, and is now marketed as SOLD ACS by Daikin Industries, Ltd. [Pg.285]

The discovery (92) that the graphite coating of molecular sieves can dramatically improve their attrition resistance without significantly impairing adsorption performance should allow the extension of moving-bed technology to bulk gas separations (93). [Pg.285]

Fluidized-bed reactor systems put other unique stresses on the VPO catalyst system. The mixing action inside the reactor creates an environment that is too harsh for the mechanical strength of a vanadium phosphoms oxide catalyst, and thus requires that the catalyst be attrition resistant (121,140,141). To achieve this goal, vanadium phosphoms oxide is usually spray dried with coUoidal siUca [7631-86-9] or polysiUcic acid [1343-98-2]. Vanadium phosphoms oxide catalysts made with coUoidal sUica are reported to have a loss of selectivity, while no loss in selectivity is reported for catalysts spray dried with polysUicic acid (140). [Pg.455]

The functions of the filler and the binder are to provide physical integrity (density, attrition resistance, particle size distribution, etc.), a heat transfer medium, and a fluidizing medium in which the more important and expensive zeolite component is incorporated. [Pg.95]

PSD is an important indicator of the fluidization characteristics of the catalyst, cyclone performance, and the attrition resistance of the catalyst. A drop in fines content indicates the loss of cyclone efficiency. This can be confirmed by the particle size of fines collected downstream of the cyclones. An increase in fines content of the E-cat indicates increased catalyst attrition. This can be due to changes in fresh catalyst binder quality, steam leaks, and/or internal mechanical problems, such as those involving the air distributor or slide vah es. [Pg.107]

Hard, attrition-resistant, insoluble synthetic polymers (typically a copolymer of styrene with divinylbenzene). The resins are manufactured in a spherical bead shape that contain either exchangeable anion or cation portions, capable of exchanging with other anions or cations and usually in an aqueous medium. Typically cation resins for water softening will have a practical operating capacity of 20,000 gpg (at 6 lb NaCl per cu ft) rising to 30,000 gpg (at 15 lb NaCl per cu ft). [Pg.744]

Control of emissions of CO, VOC, and NOj, is high on the agenda. Heterogeneous catalysis plays a key role and in most cases structured reactors, in particular monoliths, outperform packed beds because of (i) low pressure drop, (ii) flexibility in design for fast reactions, that is, thin catalytic layers with large geometric surface area are optimal, and (iii) attrition resistance [17]. For power plants the large flow... [Pg.191]

The next level is that of shaped catalysts, in the form of extrudates, spheres, or monoliths on length scales varying from millimeters to centimeters, and occasionally even larger. Such matters are to a large extent the province of materials science. Typical issues of interest are porosity, strength, and attrition resistance such that catalysts are able to survive the conditions inside industrial reactors. This area of catalysis is mainly (though not exclusively) dealt with by industry, in particular by catalyst manufacturers. Consequently, much of the knowledge is covered by patents. [Pg.18]

High attrition resistance (resistance to mechanical wear). [Pg.167]

In friability tests the material s susceptibility to attrition is evaluated. But it is not as simple as it may seem at first to select the suitable test procedure. In this context Pell (1990) gave a simple thought experiment to illustrate the difficulties If we took a batch of rubber stoppers and a batch of diamonds, and rubbed them on abrasive paper, we would conclude that the diamonds were more attrition resistant. If we instead struck the particles with a hammer we would conclude that the rubber were more attrition resistant. So, different test methods can rank materials differently with respect to their attritability. This effect was for example observed by Knight and Bridgwater (1985). They subjected spray-dried powders to a compression test, a shear test and a test in a spiral classifier. They found that each test gave a different ranking of the materials. Obviously, there is no... [Pg.447]

Friability tests can be used for various purposes. They are widely used in quality control. Here, samples of produced material are subjected to a more or less arbitrary but well defined stress. The attrition extent is assessed by comparison with a standard value and a decision is reached whether the material meets the standard. Moreover, friability tests are often used for comparison of different materials to select the most attrition-resistant one. This is a usual procedure in the case of catalyst development. For example, Contractor et al. (1989) tested anew developed fluidized bed VPO-catalyst in a submerged-jet attrition test (described below). Furthermore, the specific attrition rate of a material in a certain process can be roughly estimated by friability tests. In this case the stress must be similar to that occurring in the process and the obtained degradation extent must be compared with those of other materials from which the process attrition rate is known. [Pg.448]

Results that are obtained by different friability tests are usually not comparable. All these tests give only a relative attrition resistance and numerical results are only useful in connection with detailed information about the test considered. [Pg.448]

Fluidized Bed Tests. These tests have direct relevance to all applications where particles are subjected to conditions of fluidization. Some authors believe that these tests can also to some extent simulate the stress of pneumatic transport. Coppingeretal. (1992) found at least a good correlation with the attrition resistance in dense-phase pneumatic conveying when they tested various powders in a slugging fluidized bed. [Pg.449]

Both devices described above were developed in order to test the friability of fluid-cracking catalysts. Nowadays the application of these or similar tests is a common procedure in the development of fluidized bed catalysts. Contractor et al. (1989), for example, used a submerged-jet test to compare the attrition resistance of newly developed VPO catalysts. In fact, such tests can be applied to any type of fluidized bed processes. Sometimes they have to be slightly modified to adapt them to the process under consideration. The drilled plate may, for example, be substituted by... [Pg.451]

In general there are two ways to minimize attrition. First of all the solid particles should be chosen, treated or produced in such a way that they are as attrition-resistant as possible. On the other hand, the fluidized bed system should be designed in such a way that the effects of the various attrition sources are kept as small as possible. [Pg.475]

The Bed Material. Only catalytic processes are relevant with respect to modifying the attrition resistance of the bed material. In other processes, e g., drying, the bed material is the product and cannot be changed. In the combustion of solid fuels, the particle degradation due to attrition enlarges the reacting surface and thus increases the reactivity of the fuel. On the other hand, the lack of attrition resistance is often a major obstacle that hinders the commercialization of fluidized bed catalytic processes. [Pg.475]

Weeks, S. A., and Dumbill, P., Method Speeds FCC Catalyst Attrition Resistance Determinations, Oil GasJ., 88 38 (1990)... [Pg.490]

The choice of cyclone modification, from an operating point of view, becomes a balance of incremental profit from increased conversion, versus catalyst makeup charges, and from a capital cost point of view, the price of either of the cyclone modifications, which must be depreciated. In many instances, there is an additional background time element, involving ongoing development of more attrition resistant and/or active catalyst. [Pg.793]

Attrition resistant zeolite containing catalyst. US Patent 4,333,857. [Pg.80]

Of the various mechanical properties of a formed catalyst containing zeolite, attrition resistance is probably the most critical. This is particularly the case for FCC catalysts because of the impact on the addihon rate of fresh catalyst, particulate emissions of fines and overall catalyst flow in the reactor and regenerator. Most attrition methods are a relative determination by means of air jet attrition with samples in the 10 to 180 xm size range. For example the ASTM D5757 method attrites a humidified sample of powder with three high velocity jets of humidified air. The fines are continuously removed from the attrition zone by elucidation into a fines collection assembly. The relative attrition index is calculated from the elutriated fines removed at a specific time interval. [Pg.156]


See other pages where Attrition resistance is mentioned: [Pg.454]    [Pg.454]    [Pg.459]    [Pg.202]    [Pg.1501]    [Pg.1553]    [Pg.1553]    [Pg.1877]    [Pg.1897]    [Pg.78]    [Pg.326]    [Pg.502]    [Pg.363]    [Pg.320]    [Pg.448]    [Pg.475]    [Pg.487]    [Pg.195]    [Pg.211]    [Pg.315]    [Pg.315]    [Pg.9]    [Pg.64]    [Pg.244]    [Pg.410]    [Pg.70]    [Pg.75]    [Pg.80]    [Pg.2]   
See also in sourсe #XX -- [ Pg.448 , Pg.475 ]

See also in sourсe #XX -- [ Pg.25 ]




SEARCH



Attrition

Attrition-resistant porous microspheres

Attrition-resistant porous microspheres spray drying

Catalysts attrition resistance

Fluid catalysts attrition resistance

Spray drying, attrition-resistant porous

Spray drying, attrition-resistant porous particles

© 2024 chempedia.info