Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Acrylic formaldehyde resins

Carbon, hydrogen and possibly oxygen Resin and derivatives Natural drying oils Cellulose derivatives Alkyd resins Epoxy resins (uncured) Phenol-formaldehyde resins Polystyrene Acrylic resins Natural and synthetic rubbers Carbon monoxide Aldehydes (particularly formaldehyde, acrolein and unsaturated aldehydes) Carboxylic acids Phenols Unsaturated hydrocarbons Monomers, e.g. from polystyrene and acrylic resins... [Pg.138]

A reaction vessel explosion at BASF s resins plant in Cincinnati (July 19, 1990) killed one and injured 71. The BASF facility manufactures acrylic, alkyd, epoxy, and phenol-formaldehyde resins used as can and paper-cup liner coatings. The explosion occurred when a flammable solvent used to clean a reaction vessel vented into the plant and ignited. The cleaning solvent that was not properly vented to a condenser and separator, blew a pressure seal, and fdled the 80-year-old building with a white vapor cloud. [Pg.258]

Acrylic monomers Cyanoacrylates Urea formaldehyde resins... [Pg.308]

Good quality steel is used and electrozinc is preferred for washing machines. Steel is pretreated with iron phosphate for economy electrozinc with a fine crystal zinc phosphate. No primer is normally used 25-40/im of finish is applied direct to metal. The required properties are best obtained with a thermosetting acrylic or polyester/melamine-formaldehyde finish. Self-reactive acrylics are usually preferred these resins contain about 15 Vo 7V-butoxymethyl acrylamide (CH2=CH —CO —NH —CHj—O —C4H,) monomer and cure in a manner similar to butylated melamine-formaldehyde resins. Resistance or anti-corrosive properties may be upgraded by the inclusion of small amounts of epoxy resin. Application is usually by electrostatic spray application from disc or bell. Shapes are complex enough to require convected hot-air curing. Schedules of 20 min at 150-175°C are... [Pg.631]

The industrial production and application of reactive and non-reactive microgels in organic coatings such as binders or components of binders, e.g. together with, e.g. acrylic and/or melamine/formaldehyde resins, especially for automotive coatings, was reported in a number of publications between 1980 and... [Pg.220]

Other NAD microspheres are composed of styrene, MMA, hydroxyethyl acrylate, acrylic acid and acrylonitrile and are blended with acrylic copolymers and melamine/formaldehyde resins [341,342]. Particles of this polymer are used as rheology modifiers to prevent sagging in automotive coatings and for controlling the orientation of metal flake pigments. [Pg.220]

Conditions to be met in oven drying enamels depend also on the composition of the binder. Paint systems containing melamine-formaldehyde or urea-formaldehyde resins, for instance, harden by polycondensation with other resins, such as epoxy resins, short-oil alkyd or acrylic resins at elevated temperatures. Baking is carried out at temperatures between 100 and almost 200°C and may last from a few minutes to more than an horn. A general trend towards energy conservation has shifted public attention towards binders which require low baking temperatures. [Pg.154]

COPOLYMERIZATION WITH PARTICIPATION OF MULTIMONOMERS Synthesis of various multimonomers and their copolymerization with styrene, acrylonitrile or acrylic acid was described in a set of papers. Most of the early work on the copolymerization of multimonomers with vinyl monomers employed p-cresyl formaldehyde resins, esterified by methacryloyl chloride or acryloyl chloride, as one of the comonomers, and a simple vinyl monomer such as styrene or acrylonitrile as the other monomer. [Pg.60]

Template copolymerization seems to be applied to the synthesis of copolymers with unconventional sequences of units. As it was shown, by copolymerization of styrene with oligomers prepared from p-cresyl-formaldehyde resin esterified by methacrylic or acrylic acid - short ladder-type blocks can be introduced to the macromolecule. After hydrolysis, copolymer with blocks of acrylic or methacrylic acid groups can be obtained. Number of groups in the block corresponds to the number of units in oligomeric multimonomer. Such copolymers cannot be obtained by the conventional copolymerization. [Pg.132]

The agglomerating liquid may be water, aqueous solutions of urea, vinyl acryl, anionic melamine-formaldehyde resin, impregnating urea-formaldehyde resin, polyethylene oxide of different concentration, as well as several original preparations. [Pg.158]

A waterborne system for container coatings was developed based on a graft copolymerization of an advanced epoxy resin and an acrylic (52). The acrylic—vinyl monomers are grafted onto preformed epoxy resins in the presence of a free-radical initiator grafting occurs mainly at the methylene group of the aliphatic backbone on the epoxy resin. The polymeric product is a mixture of methacrylic acid—styrene copolymer, solid epoxy resin, and graft copolymer of the unsaturated monomers onto the epoxy resin backbone. It is dispersible in water upon neutralization with an amine before cure with an amino—formaldehyde resin. [Pg.370]

Excellent resistance to acids as well as bases is shown by a.o. PTFE and PVC. Also PS, PE and PP have a very good general resistance, but they are damaged by some strong (oxidizing) acids in prolonged exposure. Polyamides, acrylates and cellulose plastics are less resistant to some acids sensitive for bases are, a.o., cellulose plastics, polyamides, PC and some formaldehyde resins. [Pg.158]

At an optimum addition level of only 1.5 w t %, nano-size magnesium-aluminum LDHs have been shown to enhance char formation and fire-resisting properties in flame-retarding coatings, based on an intumescent formulation of ammonium polyphosphate, pentaerythritol, and melamine.89 The coating material comprised a mixture of acrylate resin, melamine formaldehyde resin, and silicone resin with titanium dioxide and solvent. It was reported that the nano-LDH could catalyze the esterification reaction between ammonium polyphosphate and pentaerythritol greatly increasing carbon content and char cross-link density. [Pg.180]

PB PBI PBMA PBO PBT(H) PBTP PC PCHMA PCTFE PDAP PDMS PE PEHD PELD PEMD PEC PEEK PEG PEI PEK PEN PEO PES PET PF PI PIB PMA PMMA PMI PMP POB POM PP PPE PPP PPPE PPQ PPS PPSU PS PSU PTFE PTMT PU PUR Poly(n.butylene) Poly(benzimidazole) Poly(n.butyl methacrylate) Poly(benzoxazole) Poly(benzthiazole) Poly(butylene glycol terephthalate) Polycarbonate Poly(cyclohexyl methacrylate) Poly(chloro-trifluoro ethylene) Poly(diallyl phthalate) Poly(dimethyl siloxane) Polyethylene High density polyethylene Low density polyethylene Medium density polyethylene Chlorinated polyethylene Poly-ether-ether ketone poly(ethylene glycol) Poly-ether-imide Poly-ether ketone Poly(ethylene-2,6-naphthalene dicarboxylate) Poly(ethylene oxide) Poly-ether sulfone Poly(ethylene terephthalate) Phenol formaldehyde resin Polyimide Polyisobutylene Poly(methyl acrylate) Poly(methyl methacrylate) Poly(methacryl imide) Poly(methylpentene) Poly(hydroxy-benzoate) Polyoxymethylene = polyacetal = polyformaldehyde Polypropylene Poly (2,6-dimethyl-l,4-phenylene ether) = Poly(phenylene oxide) Polyp araphenylene Poly(2,6-diphenyl-l,4-phenylene ether) Poly(phenyl quinoxaline) Polyphenylene sulfide, polysulfide Polyphenylene sulfone Polystyrene Polysulfone Poly(tetrafluoroethylene) Poly(tetramethylene terephthalate) Polyurethane Polyurethane rubber... [Pg.939]

Poly(vinyl alcohol) is utilized as a component of starch-based adhesives.11121114 Other patents report the use of partially oxidized starch,1115 dextrins,1116 dextrins and urea,1117 borax,1118 boric acid,1119 and vinyl methyl ether-maleic acid copolymers.1120 Other patents indicate the use of poly (vinyl alcohol) with partially hydrolyzed poly(vinyl acetate),1121 nonhy-drolyzed poly(vinyl acetate),1122 and poly(vinyl chloride).1123 A few patents have reported such poly acrylic additives as poly (acrylic acid)1124 and its salts,1125 poly(acrylamide),1126 1127 A-methylacrylamide or poly(A-acryl-amide),1128 and polyethyleneimine.1129 Polystyrene has also been used,1130 as well as more complex copolymers such as a maleic acid monobutyl ester-methyl vinyl ether copolymer, together with dextrin and polyacrylamide),1131 carboxylated ethyl acrylate-styrene zinc salt copolymer,1132 ethylene-methyl acrylate-vinyl acetate copolymer,1133 vinyl acetate-vinyl pyr-rolidone copolymer,1134 and ethylene-vinyl acetate copolymer.1135 Some adhesives are compounded with SBR latex1136 1138 and phenol-formaldehyde resins.1139... [Pg.413]

ASA poly(acrylic acid-co-styrene-co-acrylonitrile) PF phenol-formaldehyde resin... [Pg.11]

ACD is a skin reaction resulting from contact dermal contact with allergens. ACD progresses in two phases. Sensitization is acquired in the initial phase. In the second phase, subsequent exposure elicits an inflammatory reaction. F°1 Large numbers of chemical compounds are known to cause ACD. These include acrylates, aldehydes, amines, anhydrides, etha-nolamines, formaldehyde, resins, metals, pesticides, phenols, phthalate esters, preservatives, isocyanates, solvents, and others. Table 27.4 contains a partial list of these. A more complete list can be found on the webJ21l... [Pg.465]

Major end uses for methanol are for the production of formaldehyde, about 30%, which is used for the preparation of phenol-formaldehyde resins. About 20% is used for the production of methyl -butyl ether, which is used as an additive alone, and in blends with methanol as a fuel component. Further uses are for the esterification of terephthalic, and acrylic acids, and for acetic acid preparation, about 10% each. [Pg.648]

Resins, types of polymers, are the thickening and hardening agents that, without pigments, serve as colorless nail protectors resembling clear furniture lacquer. These agents include nitrocellulose (collodion) and different acrylate and polyester/polyurethane copolymers. Copolymers include chemicals such as methacrylic acid, isobutyl methacrylate, toluenesulfona-mide formaldehyde resin, phthallic anhydride/trimellitic anhydride/glycol copolymer, tosylamide/formaldehyde resin, and dimethicone copolyol. [Pg.50]

MS polymers Phenol-formaldehyde resins Polyimides Acrylates and epoxides, radiation-crosslinkable Rubber adhesives, crosslinking Adhesive films, heat activating Activation temperature variable... [Pg.225]


See other pages where Acrylic formaldehyde resins is mentioned: [Pg.648]    [Pg.648]    [Pg.22]    [Pg.402]    [Pg.677]    [Pg.265]    [Pg.92]    [Pg.675]    [Pg.521]    [Pg.163]    [Pg.22]    [Pg.71]    [Pg.677]    [Pg.334]    [Pg.242]    [Pg.521]    [Pg.496]    [Pg.171]    [Pg.795]    [Pg.99]    [Pg.372]    [Pg.177]    [Pg.532]   
See also in sourсe #XX -- [ Pg.641 ]




SEARCH



Acrylate resin

Acrylates Acrylic resins

Acrylic resins

Formaldehyde resin

© 2024 chempedia.info