Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Acrylic acid Chlorinated ethylenes

As reported by Diehl et al. [58], interpolymers are also compatible with a broader range of polymers, including styrene block copolymers [59], poly(vinyl chloride) (PVC)-based polymers [60], poly(phenylene ethers) [61] and olefinic polymers such as ethylene-acrylic acid copolymer, ethylene-vinyl acetate copolymer and chlorinated polyethylene. Owing to their unique molecular structure, specific ESI have been demonstrated as effective blend compatibilizers for polystyrene-polyethylene blends [62,63]. The development of the miscibility/ compatibility behavior of ESI-ESI blends differing in styrene content will be highlighted below. [Pg.617]

Chlorinated, sulfonated, chlorosulfonated or epoxidized polymers, homopolymers and copolymers of functionalized monomers, e.g. poly(methacryl aldehyde), poly(2,3-epoxypropyl acrylate), poly(4-vinylphenol), poly(propylene-co-10-unde-cene-l-ol), poly(butadiene-co-methacryl aldehyde), poly(butadiene-co-acrylic acid), poly(ethylene-co-alkyl acrylate), poly(alkyl acrylate-co-2,3-epoxypropyl acrylate), poly(alkyl acrylate-co-maleic anhydride), poly(styrene-co-4-vinylbenzyl chloride)... [Pg.131]

Extension of the chlorosulfonation technology to base resins other than polyethylene, where value can be added, seems a logical next step. Polypropylene and ethylene copolymers containing additional functionaUty, ie, maleic anhydride graft, vinyl acetate, acrylic acid, etc, have been chlorinated and chlorosulfonated to broaden the appHcation base, particularly in coatings and adhesives (9,10). [Pg.490]

ABA ABS ABS-PC ABS-PVC ACM ACS AES AMMA AN APET APP ASA BR BS CA CAB CAP CN CP CPE CPET CPP CPVC CR CTA DAM DAP DMT ECTFE EEA EMA EMAA EMAC EMPP EnBA EP EPM ESI EVA(C) EVOH FEP HDI HDPE HIPS HMDI IPI LDPE LLDPE MBS Acrylonitrile-butadiene-acrylate Acrylonitrile-butadiene-styrene copolymer Acrylonitrile-butadiene-styrene-polycarbonate alloy Acrylonitrile-butadiene-styrene-poly(vinyl chloride) alloy Acrylic acid ester rubber Acrylonitrile-chlorinated pe-styrene Acrylonitrile-ethylene-propylene-styrene Acrylonitrile-methyl methacrylate Acrylonitrile Amorphous polyethylene terephthalate Atactic polypropylene Acrylic-styrene-acrylonitrile Butadiene rubber Butadiene styrene rubber Cellulose acetate Cellulose acetate-butyrate Cellulose acetate-propionate Cellulose nitrate Cellulose propionate Chlorinated polyethylene Crystalline polyethylene terephthalate Cast polypropylene Chlorinated polyvinyl chloride Chloroprene rubber Cellulose triacetate Diallyl maleate Diallyl phthalate Terephthalic acid, dimethyl ester Ethylene-chlorotrifluoroethylene copolymer Ethylene-ethyl acrylate Ethylene-methyl acrylate Ethylene methacrylic acid Ethylene-methyl acrylate copolymer Elastomer modified polypropylene Ethylene normal butyl acrylate Epoxy resin, also ethylene-propylene Ethylene-propylene rubber Ethylene-styrene copolymers Polyethylene-vinyl acetate Polyethylene-vinyl alcohol copolymers Fluorinated ethylene-propylene copolymers Hexamethylene diisocyanate High-density polyethylene High-impact polystyrene Diisocyanato dicyclohexylmethane Isophorone diisocyanate Low-density polyethylene Linear low-density polyethylene Methacrylate-butadiene-styrene... [Pg.958]

PVC can be blended with numerous other polymers to give it better processability and impact resistance. For the manufacture of food contact materials the following polymerizates and/or polymer mixtures from polymers manufactured from the above mentioned starting materials can be used Chlorinated polyolefins blends of styrene and graft copolymers and mixtures of polystyrene with polymerisate blends butadiene-acrylonitrile-copolymer blends (hard rubber) blends of ethylene and propylene, butylene, vinyl ester, and unsaturated aliphatic acids as well as salts and esters plasticizerfrec blends of methacrylic acid esters and acrylic acid esters with monofunctional saturated alcohols (Ci-C18) as well as blends of the esters of methacrylic acid butadiene and styrene as well as polymer blends of acrylic acid butyl ester and vinylpyrrolidone polyurethane manufactured from 1,6-hexamethylene diisocyanate, 1.4-butandiol and aliphatic polyesters from adipic acid and glycols. [Pg.31]

For unplasticized chlorinated PVC, unplasticized chlorinated polymer blends of vinyl chloride and mixtures of these copolymers with other polymer blends, the following starting materials can be used PVC (homopolymer) polymer blends of vinyl chloride, vinylidene chloride, trans-dichloroethylene, ethylene, propylene, butylene, maleic acid, fumaric acid, itaconic acid, acrylic acid, methacrylic acid as well as chlorine. [Pg.31]

Figure 9. Spectra of poly(vinyl chloride), carboxylated poly(vinyl chloride), chlorinated polyethylene (36% chlorine), and ethylene/acrylic acid copolymer (20% acrylic acid). Figure 9. Spectra of poly(vinyl chloride), carboxylated poly(vinyl chloride), chlorinated polyethylene (36% chlorine), and ethylene/acrylic acid copolymer (20% acrylic acid).
BARIUM DIHYDROXIDE (17194-00-2) A strong base. Reacts with phosphorus, releasing phosphine gas. Violent exothermic reaction with maleic anhydride. Reacts violently with acids, chlorinated rubber (when heated), 1-nitropropane, zirconium powder or dust. Incompatible with organic anhydrides, acrylates, alcohols, aldehydes, alkylene oxides, substituted allyls, cresols, caprolactam solution, epichlorohydrin, ethylene dichloride, glycols, isocyanates, ketones, nitrates, nitromethane, phenols, vinyl acetate. Attacks chemically active metals (e.g. aluminum, magnesium, zinc). [Pg.151]

I I Acetone, acrolein, acrylic acid, ally) chloride, carbon disulfide, chlorinated solvents, cresols. dichloropei tadiene. epichJorhydrin. ethylene-propylene rubber, glycerin. 4-methyl l-penlene. o italic add. poiymclh methacrylate, paranuns-... [Pg.164]

Setua and White (1991 a,b) used CM (chlorinated polyethylene) as a compatibilizer to improve the homogeneity of binary and ternary blends of CR, NBR, and EPR. NBR-EPM and CR-EPDM blends homogenize more rapidly when small amounts of CM are added. The presence of the compatibilizer leads to reductions in both the time needed for mixing, observed by flow visualization, and the domain size of the dispersed phase, observed by SEM. Arjunan et al. (1997) have used an ethylene acrylic acid copolymer and an EPR-g-acrylate as a compatibilizer for blends of EPDM-CR. The addition of the compatibilizer leads to the reduction in the phase size of the dispersed EPDM phase as well as increase in the tensile tear strength of the blend. [Pg.577]

Lucalen . See Ethylene/acrylic acid copolymer Lucaior CPVC. See Polyvinyl chloride, chlorinated... [Pg.2432]

Acrylate styrene acrylonitrile Acrylate modified styrene acrylonitrile Acrylic acid ester rubber Acrylonitrile butadiene rubber or nitrile butadiene rubber Acrylonitrile butadiene styrene Acrylonitrile styrene/chlorinated polyethylene Acrylonitrile methyl methacrylate Acrylonitrile styrene/EPR rubber or, acrylonitrile ethylene propylene styrene Alpha methyl styrene Atactic polypropylene Butadiene rubber or, cis-1,4-polybutadiene rubber or, polybutadiene rubber Butadiene styrene block copolymer Butyl rubber Bulk molding compound Casein formaldehyde Cellulose acetate Cellulose acetate butyrate Cellulose acetate propionate Cellulose nitrate Chlorinated polyethylene Chlorinated polyvinyl chloride Chloro-polyethylene or, chlorinated polyethylene. [Pg.135]

Some specific recent applications of the chromatography-mass spectrometry technique to various types of polymers include the following PE [130, 131], poly(l-octene), poly(l-decene), poly(l-dodecene) and 1-octene-l-decene-l-dodecene terpolymer [132], chlorinated polyethylene [133], polyolefins [134,135], acrylic acid, methacrylic acid copolymers [136, 137], polyacrylate [138], styrene-butadiene and other rubbers [139-141], nitrile rubber [142], natural rubbers [143,144], chlorinated natural rubber [145,146], polychloroprene [147], PVC [148-150], silicones [151,152], polycarbonates (PC) [153], styrene-isoprene copolymers [154], substituted PS [155], polypropylene carbonate [156], ethylene-vinyl acetate copolymer [157], Nylon 6,6 [158], polyisopropenyl cyclohexane-a-methylstyrene copolymers [195], cresol-novolac epoxy resins [160], polymeric flame retardants [161], poly(4-N-alkylstyrenes) [162], pol)winyl pyrrolidone [31,163], vinyl pyrrolidone-methacryloxysilicone copolymers [164], polybutylcyanoacrylate [165], polysulfide copolymers [1669], poly(diethyl-2-methacryloxy) ethyl phosphate [167, 168], ethane-carbon monoxide copolymers [169], polyetherimide [170], and bisphenol-A [171]. [Pg.125]

Additionally to the procedures described earlier, improvements for thermostabilization is copolymerisation of vinyl chloride with suitable monomers. A great number of monomers were investigated to optimize the properties of resins. But only vinyl acetate, vinylidene chloride, ethylene, propylene, acrylonitrile, acrylic acid esters, and maleic acid esters, respectively, are of interest commercially [305,436,437]. The copolymerization was carried out in emulsion, suspension, and solution in connection with water- or oil-soluble initiators, as mentioned elsewhere. Another possibility for modifying PVC is grafting of VC on suitable polymers [305,438], blends of PVC with butadiene/styrene and butadiene/ methacryl acid esters copolymers [433], and polymer-analogous reactions on the macromolecule [439,440] (e.g., chlorination of PVC). [Pg.201]

SBS and SEBS block copolymers have been employed to impact modify HIPS, PPO/HIPS and various polyolefins. Maleic anhydride modified SEBS offers impact modification of polyamides and polyesters via reactive compatibilization. Chlorinated polyethylene (< 42 wt% Cl) is employed as an impact modifier for PVC, where weatherability is a primary concern [121]. Ethylene-(meth)acrylic acid copolymers and their neutralized versions (ionomers) have been utilized as impact modifiers for polyamides. PBT and PET impact modification with the poly(ester-ether block copolymer) (PBT-poly(tetramethylene oxide) (AB) ) yielded utility in automotive fascia applications. These products have been available under the tradenames Lomod (GE), Bexloy (duPont) andRiteflex (Hoechst-Celanese) [3]. [Pg.398]


See other pages where Acrylic acid Chlorinated ethylenes is mentioned: [Pg.108]    [Pg.53]    [Pg.106]    [Pg.107]    [Pg.311]    [Pg.386]    [Pg.418]    [Pg.436]    [Pg.462]    [Pg.471]    [Pg.934]    [Pg.46]    [Pg.48]    [Pg.83]    [Pg.385]    [Pg.507]    [Pg.526]    [Pg.334]    [Pg.73]    [Pg.4790]    [Pg.230]    [Pg.462]    [Pg.6520]    [Pg.51]    [Pg.103]    [Pg.265]   
See also in sourсe #XX -- [ Pg.362 ]




SEARCH



Acrylic acid Chlorine

ETHYLENE ACRYLIC ACID

Ethylene acidity

Ethylene acids

Ethylene chlorination

Ethylene-acrylate

© 2024 chempedia.info