Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Acid Catalyst Composition

Nishlkido etal, US Patent 6,436,866 (August 20, 2002) Assignee Asahi Kasei Kabushiki Kaisha Utility Lanthanide Lewis Acid Catalysts [Pg.208]

Benzaldehyde (81 mg) and methyl trimethoxysilyl dimethylketene acetal (165 mg) were added to a mixure of 3 ml perfluorooctane and 4 ml toluene. To this mixture was added Imol % (based on benzaldehyde) ytterbium (tris(trisperfluorooctanesulfonyl)methide) and the reaction stirred 15 minutes at 40°C. Mixing and heating were stopped and the mixture separated into upper toluene layer and lower perfluorooctane layer. Each layer was analyzed by gas chromatography 99% of the product was detected in the lower layer. Atomic emission spectrometry indicated that at least 99% of the catalyst was also present in the lower layer. [Pg.208]

Preparation of ytterbium tris(tris(perfluorobutanesulfonyl)-methide) [Pg.208]

Tris(perfluorobutanesulfonyl)methide (3.0 g) was added to a solution of 15 ml acetonitrile, 15 ml water, and ytterbium carbonate (0.39 g). The mixture was stirred 7 hours at ambient temperature and was then heated to 50 °C one hour. The mixture was filtered and the product isolated by vacuum drying at 50°C at 1-10 mm Hg followed by drying at 90°C at 0.01 mm Hg for 24 hours. Elemental analysis supplied. [Pg.208]

Preparation of scandium tris(tris(perfluorooctanesulfonyl)methide) [Pg.208]


A gradient, multi-catalyst, two-reactor design, containing three distinctly different transition-metal/solid acid catalyst compositions (9). [Pg.154]

Single-reaction-step processes have been studied. However, higher selectivity is possible by optimizing catalyst composition and reaction conditions for each of these two steps (40,41). This more efficient utilization of raw material has led to two separate oxidation stages in all commercial faciUties. A two-step continuous process without isolation of the intermediate acrolein was first described by the Toyo Soda Company (42). A mixture of propylene, air, and steam is converted to acrolein in the first reactor. The effluent from the first reactor is then passed directiy to the second reactor where the acrolein is oxidized to acryUc acid. The products are absorbed in water to give about 30—60% aqueous acryUc acid in about 80—85% yield based on propylene. [Pg.152]

The boric and sulfuric acids are recycled to a HBF solution by reaction with CaF2. As a strong acid, fluoroboric acid is frequently used as an acid catalyst, eg, in synthesizing mixed polyol esters (29). This process provides an inexpensive route to confectioner s hard-butter compositions which are substitutes for cocoa butter in chocolate candies (see Chocolate and cocoa). Epichlorohydrin is polymerized in the presence of HBF for eventual conversion to polyglycidyl ethers (30) (see Chlorohydrins). A more concentrated solution, 61—71% HBF, catalyzes the addition of CO and water to olefins under pressure to form neo acids (31) (see Carboxylic acids). [Pg.165]

Dry reduced nickel catalyst protected by fat is the most common catalyst for the hydrogenation of fatty acids. The composition of this type of catalyst is about 25% nickel, 25% inert carrier, and 50% soHd fat. Manufacturers of this catalyst include Calsicat (Mallinckrodt), Harshaw (Engelhard), United Catalysts (Sud Chemie), and Unichema. Other catalysts that stiH have some place in fatty acid hydrogenation are so-called wet reduced nickel catalysts (formate catalysts), Raney nickel catalysts, and precious metal catalysts, primarily palladium on carbon. The spent nickel catalysts are usually sent to a broker who seUs them for recovery of nickel value. Spent palladium catalysts are usually returned to the catalyst suppHer for credit of palladium value. [Pg.91]

Continuous esterification of acetic acid in an excess of -butyl alcohol with sulfuric acid catalyst using a four-plate single bubblecap column with reboiler has been studied (55). The rate constant and the theoretical extent of reaction were calculated for each plate, based on plate composition and on the total incoming material to the plate. Good agreement with the analytical data was obtained. [Pg.378]

A good deal of experimental care is often required to ensure that the product mixture at the end of a Friedel-Crafts reaction is determined by kinetic control. The strong Lewis acid catalysts can catalyze the isomerization of alkylbenzenes, and if isomerization takes place, the product composition is not informative about the position selectivity of electrophilic attack. Isomerization increases the amount of the meta isomer in the case of dialkylbenzenes, because this isomer is thermodynamically the most stable. ... [Pg.583]

These poly(2-alkyl-2-oxazoline) silane coupling agents were copolycondensed with tetraethoxysilane by acid-catalyst to produce poly(2-alkyl-2-oxazoline)-modified silica gel. The composite gel from 2-ethyl-2-oxazoline was also homogeneous and transparent glass. Poly(2-alkyl-2-oxazoline)-modified silica gels, especially gels based on poly(2-ethyl-2-oxazoline) absorbed water and also organic solvents such as DMF or alcohols as shown in Table 7. This result means that the obtained composite gel shows the amphiphilic adsorption property. [Pg.26]

Effect of Catalyst Composition. Where acetic is the typical acid substrate, effective ruthenium catalyst precursors include ruthenium(IV) oxide, hydrate, ruthenium(III) acetyl-acetonate, triruthenium dodecacarbonyl, as well as ruthenium hydrocarbonyls, in combination with iodide-containing promoters like HI and alkyl iodides. Highest yields of these higher MW acids are achieved with the Ru02-Mel combination,... [Pg.224]

Table I gives the compositions of alkylates produced with various acidic catalysts. The product distribution is similar for a variety of acidic catalysts, both solid and liquid, and over a wide range of process conditions. Typically, alkylate is a mixture of methyl-branched alkanes with a high content of isooctanes. Almost all the compounds have tertiary carbon atoms only very few have quaternary carbon atoms or are non-branched. Alkylate contains not only the primary products, trimethylpentanes, but also dimethylhexanes, sometimes methylheptanes, and a considerable amount of isopentane, isohexanes, isoheptanes and hydrocarbons with nine or more carbon atoms. The complexity of the product illustrates that no simple and straightforward single-step mechanism is operative rather, the reaction involves a set of parallel and consecutive reaction steps, with the importance of the individual steps differing markedly from one catalyst to another. To arrive at this complex product distribution from two simple molecules such as isobutane and butene, reaction steps such as isomerization, oligomerization, (3-scission, and hydride transfer have to be involved. Table I gives the compositions of alkylates produced with various acidic catalysts. The product distribution is similar for a variety of acidic catalysts, both solid and liquid, and over a wide range of process conditions. Typically, alkylate is a mixture of methyl-branched alkanes with a high content of isooctanes. Almost all the compounds have tertiary carbon atoms only very few have quaternary carbon atoms or are non-branched. Alkylate contains not only the primary products, trimethylpentanes, but also dimethylhexanes, sometimes methylheptanes, and a considerable amount of isopentane, isohexanes, isoheptanes and hydrocarbons with nine or more carbon atoms. The complexity of the product illustrates that no simple and straightforward single-step mechanism is operative rather, the reaction involves a set of parallel and consecutive reaction steps, with the importance of the individual steps differing markedly from one catalyst to another. To arrive at this complex product distribution from two simple molecules such as isobutane and butene, reaction steps such as isomerization, oligomerization, (3-scission, and hydride transfer have to be involved.
Compositions of alkylates obtained with various feed alkenes and various acid catalysts (50,228)... [Pg.299]

Phenolic novolacs, 18 760-761 Phenolic resin adhesives, 18 783-784 Phenolic resin can coatings, 18 38 Phenolic resin composites, 18 792-794 Phenolic resin drying-oil varnishes, 18 783 Phenolic resin fibers, 18 797-798 mechanical properties of, 18 798 Phenolic resin foam, 18 795-796 Phenolic resin manufacturers, U.S., 18 774 Phenolic resin polymerization, 18 760-765 alkaline catalysts in, 18 762-765 neutral catalysts in, 18 761-762 strong-acid catalysts in, 18 760-761 Phenolic resin prepregs, 18 793 Phenolic resin production unit, 18 766 Phenolic resins, 10 409 18 754-755, 756-802 22 10 26 763 in abrasive materials, 18 786-787 in air and oil filters, 18 790 additional reactants in, 18 759 analytical methods for, 18 774-779 applications of, 18 781-798 batch processes for, 18 766 from biomass and biochemical processes, 18 769-770... [Pg.693]

TFEMA), necessary for preparation of functional water repellent paints and optical fiber coating agents. TFEMA can be manufactured by esterification of TFEA and methacrylic acid (MA) in the presence of an acid catalyst, at 70 °C. To obtain a higher conversion rate it is necessary to remove the water from the system, avoiding the formation of the thermodynamic equilibrium composition. [Pg.133]

Because the composition and nano-scale structure of a catalyst depend on the temperature and the gas environment, it is important to measure catalyst activity under conditions experienced in the industrial converters. For the sulphuric acid catalysts, the activity for conversion of S02 to S03 was measured in the set-up shown in Fig. 9. [Pg.325]

The evaluation of carriers and catalyst compositions showed that significantly higher SO2 oxidation activity could be achieved with Cs as a promoter under the operating conditions downstream the intermediate absorption tower as demonstrated by the results in Table 1, where the activity compared to the standard product is increased by more than a factor 2. This was clearly sufficient for the introduction of VK69 to the market as a new sulphuric acid catalyst. The activity results for different melt compositions were used to optimise the vanadium content and the molar ratios of K/V, Na/V. and Cs/V. However, the choice of Cs/V was not only a question of maximum activity, because of the significant influence of the Cs content on the raw material costs (the price of caesium is 50-100 times the price of potassium on a molar basis). Here, the economic benefits obtained by the sulphuric acid producer by the marginal activity improvement at high Cs content also had to be taken into account. [Pg.338]

High Temperature Operation of the PEMFC The first generation of commercial PEMFCs will use presently known components, consisting of a perfluorosulfonic acid membrane as electrolyte and catalyst compositions as cited above. The electrolyte determines that the fuel cell needs to be operated at fully humidified conditions and limits the operating temperature to 80-90 °C. [Pg.325]

The requirement of small structural differences within the series of reactants for obtaining a LFER has its parallel in series of catalysts. Meaningful values of result only when the catalysts operate principally in the same way, that is, when the reaction mechanism is basically the same. This is most likely to occur when the catalysts differ only by minor modifications in the method of preparation or when their composition is only slightly modified by the addition of promoters. With chemically different catalysts the similarity is achieved when the active centers have as their decisive component a common species, for example, protons on solid acidic catalysts. [Pg.162]

Problems such as diffusional limitations and the analysis of catalyst composition occur with solid-phase catalysts. Much work has been done on diffusion in bound enzymes (for reviews, see 24 and 88). In our work we used ninhydrin, which is a reagent ideal for surface analysis amino acid analysis is used wherever possible. Amine depletion as followed by ninhydrin is not exact, but some quantitative guides are obtained. Certainly synthetic catalysts must be made with bonds other than amide bonds and components other than those compounds that are detectable on the amino acid analyzer. [Pg.222]

Figure 16.8 Comparison of feed and product catalysts, (b) the formation of different composition from light cycle oil hydrocracking distributions of substituted single-rings showing (a) essentially complete conversion depending on catalyst composition. Catalysts of feed two-ring compounds on four different 1—4 differ in metal and acid function. Figure 16.8 Comparison of feed and product catalysts, (b) the formation of different composition from light cycle oil hydrocracking distributions of substituted single-rings showing (a) essentially complete conversion depending on catalyst composition. Catalysts of feed two-ring compounds on four different 1—4 differ in metal and acid function.
A process performance study has been conducted by David et al. [47] taking the coupling of pervaporation with the esterification reactions of 1-propanol and 2-pro-panol with propionic acid as a model system. Toluene sulfonic acid was appHed as the homogeneous acid catalyst A PVA-based composite membrane from GFT was used. Fig. 13.5 shows the comparison between the esterification reaction with and without pervaporation. Without pervaporation, the conversion factor reaches a hm-it, which corresponds to the equihbrium of the esterification reaction. Coupling of the esterification to pervaporation allows the reaction to reach almost complete conversion. [Pg.534]

Catalysts Composition (X) Metal content (Wt%) Relative Acid-base property Phenol conversion (Wt%) 2-lP selectivity (Wt%)... [Pg.166]

It is important to understand the catalyst characteristics in detail, which in turn helps to understand the catalyst better and correlate the structure and composition of the catalysts with its performance, so that further improvement of the catalyst is possible. Acidity is an important property which influences the overall activity of the alkylation catalysts and the same was studied for Cui.xZnxFc204 by IR and TPD methods. The changes in acidity with respect to catalyst composition and temperature were studied through pyridine adsorption followed by IR measurements. In situ FTIR spectra of pyridine adsorbed on Cui xZnxFe204 between 100 and 400°C (Figme 23) indicated Lewis acidity is the predominant active centers available on the surface [14]. [Pg.179]

Propene also undergoes conjunct polymerization in the presence of dilute phosphoric acid at high temperatures and pressures (Monroe and Gilliland, 58). When propene was treated with 10-30% phosphoric acid at 260-305° and at 170-410 atmospheres pressure, the only operating variable which appreciably affected the composition of the polymer was the extent to which the feed was polymerized. At constant percentage reaction of the feed under these conditions, the temperature, pressure, and acid catalyst concentration had no effect on the product composition. At low conversions, the polymer consisted of nearly pure dimer at 50% polymerization, two-thirds of the total was dimer and even when the feed was almost completely polymerized, the dimer fraction amounted to 35-40 % of the total polymer. The dimer and trimer fractions obtained at temperatures of 305° or lower using a acid concentrations below 30% contained about 25% paraffins and little or no naphthenes or aromatic hydrocarbons. [Pg.66]

In a more detailed examination of the ruthenium-cobalt-iodide "melt" catalyst system, we have followed the generation of acetic acid and its acetate esters as a function of catalyst composition and certain operating parameters, and examined the spectral properties of these reaction products, particularly with regard to the presence of identifiable metal carbonyl species. [Pg.99]


See other pages where Acid Catalyst Composition is mentioned: [Pg.208]    [Pg.176]    [Pg.208]    [Pg.176]    [Pg.115]    [Pg.444]    [Pg.467]    [Pg.504]    [Pg.308]    [Pg.247]    [Pg.155]    [Pg.222]    [Pg.19]    [Pg.461]    [Pg.73]    [Pg.601]    [Pg.46]    [Pg.93]    [Pg.95]    [Pg.319]    [Pg.261]    [Pg.267]    [Pg.95]    [Pg.493]    [Pg.186]    [Pg.187]    [Pg.257]    [Pg.213]    [Pg.29]   


SEARCH



Catalysts composition

Composite catalysts

© 2024 chempedia.info