Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Ytterbium carbonates

Tris(perfluorobutanesulfonyl)methide (3.0 g) was added to a solution of 15 ml acetonitrile, 15 ml water, and ytterbium carbonate (0.39 g). The mixture was stirred 7 hours at ambient temperature and was then heated to 50 °C one hour. The mixture was filtered and the product isolated by vacuum drying at 50°C at 1-10 mm Hg followed by drying at 90°C at 0.01 mm Hg for 24 hours. Elemental analysis supplied. [Pg.208]

The YbCo.gj carbide reported by Haschke and Eick (1970a) was not verified to exist in the ytterbium-carbon system by other workers. Its crystal structure was not determined by these authors. In contrast, the two forms of the YCq.s+z compound, the face-centered cubic Fe4N-type form and the rhombohedral CdCl-type form, have been well determined. Their lattice parameters are in good agreement with the systematic variation between those of the other heavy lanthanide hypocarbides, although the composition range for this diphase mixture was not determined. The only information about this material was provided by Spedding et al. (1958). They reported that a carbon-rich YbsC compound exists. [Pg.75]

In comparison with the carbide-forming characteristics of the other heavy-lanthanide-carbon systems, the europium-carbon and ytterbium-carbon systems behave like their neighboring systems. In particular, the types and structures of these carbides are identical. The main difference is the larger lattice parameter of the... [Pg.75]

Organoytterbium chemistry has been developed in the last 20 years, although the development rate is much slower than the other lanthanides like samarium or cerium. Dianionic complexes that are produced from the reaction of ytterbium with diaryl ketones react with various kinds of electrophiles including carbon-heteroatom unsaturated bonds.35 Phenylytterbium iodide, a Grignard-type reagent, is known to have reactivity toward carbon dioxide,36 aldehydes, ketones,37,37 and carboxylic acid derivatives38,3811 to form the corresponding adducts respectively. [Pg.415]

An ytterbium binaphthol catalyst was successfully applied in the cycloaddition reactions of 3-carbomethoxy-2-pyrone (454) with O- and S-subsli luted olefins like 455 and 280d. Upon heating, the products lost carbon dioxide to yield chiral cyclohexadienes 456 (equation 136). S -substituted olefins generally gave higher ee values than the corresponding O-substituted ones. [Pg.437]

Ytterbium oxide (Yb O ) is used to make special alloys, ceramics, and glass. It can be used for carbon arc-lamp electrodes that produce a very bright light. [Pg.302]

The metal has very little commercial use. In elemental form it is a laser source, a portable x-ray source, and as a dopant in garnets. When added to stainless steel, it improves grain refinement, strength, and other properties. Some other applications, particularly in oxides mixed with other rare earths, are as carbon rods for industrial hghting, in titanate insulated capacitors, and as additives to glass. The radioactive isotope ytterbium-169 is used in portable devices to examine defects in thin steel and aluminum. The metal and its compounds are used in fundamental research. [Pg.974]

Ytterbium oxide is used in cored carbon rods for industrial lighting. The oxide also is used as an additive in special glasses. Other uses are in dielectric ceramics and special alloys. [Pg.976]

The radionuclides commercially available and most commonly used for a number of the foregoing applications include anhmony-125 banum-133, 207 bismuth-207 bromine-82 cadmium-109, 115 m calcium-45 carbon-14 cerium-141 cesium-134, 137 chlorine-36 chromium-51 cobalt-57, 58, 60 copper-64 gadolimum-153 germanium-68 gold-195. 198 hydrogen-3 (tritium) indium-111, 114 m iodine-125, 129, 131 iron-55, 59 krypton-85 manganese-54 mercury-203 molvbdenum-99 nickel-63 phosphorus-32. 33 potassium-42 promethium-147 rubidium-86 ruthenium-103 samarium-151 scandium-46 selenium-75 silver-110 m sodium-22, strontium-85 sulfur-35 technetium-99 thallium-204 thulium-171 tin-113, 119 m, 121 m. titamum-44 ytterbium-169, and zinc-65. [Pg.1410]

The basis for applying the LIS quantitatively to problems in stereochemistry depends upon expressions including the term (3 cos2 — l)r-3, where r is the distance from the carbon to the lanthanide ion and the angle d is defined by the symmetry axis of the complex and the vector from the lanthanide ion to the carbon in question. This application depends on a LIS imposed entirely by the pseudocontact mechanism. It has been shown that the contact mechanism is important for europium and praseodymium complexes in 13C NMR for distances up to four bonds from the site of complexation, and that ytterbium complexes interact with 13C nuclei largely, if not entirely, by the pseudocontact process. (12, 13)... [Pg.201]

Yamamoto has reported that ytterbium triisopropoxide, prepared in situ from Yb(OTf)3 and LiOPr in THF, can be used in a very mild, highly efficient, and widely applicable procedure for the azidolysis of epoxides. In every case except styrene oxide, products are derived from the attack of azide at the less hindered carbon atom. The method appears to be quite tolerant of functionality, leaving preexisting tosyl, acyl, and siloxy groups intact (e.g.,... [Pg.53]

Readion of anisole (1) with acetic anhydride was chosen as a model, and ytterbium trifluoromethanesulfonate (ytterbium triflate, Yb(OTf)3) was the first RE(OTf)3 representative used. Several reaction conditions were examined the results are summarized in Table 1. When acetic anhydride, acetonitrile, or nitromethane was used as a solvent (entries 4—10), the reaction mixture became homogeneous and the acylation reaction proceeded smoothly. Nitromethane gave the highest yield of4-methoxyaceto-phenone (2) (entries 7-10). On the other hand, in carbon disulfide, dichloroethane, or nitrobenzene (entries 1-3), the reaction mixture was heterogeneous and the yield of 2 was low. It was noted that the acylation proceeded quantitatively when a catalytic amount of Yb(OTf)3 was used (0.2equiv., entry 9). Even when 0.05 equiv. of the catalyst was employed, 2 was obtained in 79 % yield (entry 10). [Pg.142]

IOB alone can oxidize some alcohols, but catalysed oxidations are much more efficient. Thus, in the presence of RuCl2(PPh3)2 primary aliphatic alcohols were oxidized cleanly to aldehydes, at room temperature the use of m-iodosylbenzoic acid instead of IOB considerably increased the yields for example, hexanal was formed from hexanol quantitatively (by GC) [19], Another catalytic system involved the use of simple lanthanide salts such as ytterbium triacetate [20]. Cyclic y-stannyl alcohols, readily available from cyclic vinyl ketones and Bu3SnLi, underwent oxidation accompanied by carbon-carbon bond cleavage (Grab fragmentation), when treated with IOB.BF3 and DCC. The products were unsaturated aldehydes or ketones. [Pg.84]

Roesky introduced bis(iminophosphorano)methanides to rare earth chemistry with a comprehensive study of trivalent rare earth bis(imino-phosphorano)methanide dichlorides by the synthesis of samarium (51), dysprosium (52), erbium (53), ytterbium (54), lutetium (55), and yttrium (56) derivatives.37 Complexes 51-56 were prepared from the corresponding anhydrous rare earth trichlorides and 7 in THF and 51 and 56 were further derivatised with two equivalents of potassium diphenylamide to produce 57 and 58, respectively.37 Additionally, treatment of 51, 53, and 56 with two equivalents of sodium cyclopentadienyl resulted in the formation of the bis(cyclopentadienly) derivatives 59-61.38 In 51-61 a metal-methanide bond was observed in the solid state, and for 56 this was shown to persist in solution by 13C NMR spectroscopy (8Ch 17.6 ppm, JYc = 3.6 2/py = 89.1 Hz). However, for 61 the NMR data suggested the yttrium-carbon bond was lost in solution. DFT calculations supported the presence of an yttrium-methanide contact in 56 with a calculated shared electron number (SEN) of 0.40 for the yttrium-carbon bond in a monomeric gas phase model of 56 for comparison, the yttrium-nitrogen bond SEN was calculated to be 0.41. [Pg.54]

The same differential behavior can be observed with amine nucleophiles. For example, calcium triflate promotes the aminolysis of propene oxide 84 with benzylamine to give 1-(A -benzyl)amino-2-propanol 85, the result of attack at the less substituted site <03T2435>, and which is also seen in the solventless reaction of epoxides with heterocyclic amines under the catalysis of ytterbium(III) triflate <03SC2989>. Conversely, zinc chloride directs the attack of aniline on styrene oxide 34 at the more substituted carbon center <03TL6026>. A ruthenium catalyst in the presence of tin chloride also results in an SNl-type substitution behavior with aniline derivatives (e.g., 88), but further provides for subsequent cyclization of the intermediate amino alcohol, thus representing an interesting synthesis of 2-substituted indoles (e.g., 89) <03TL2975>. [Pg.67]

Divalent samarium complexes can also catalyze ethylene polymerization, initially through one-electron transfer from the Sm(II) species to an ethylene molecule to form a Sm(III)-carbon bond, which is the active intermediate that induces ethylene polymerization. The less reducing divalent organometallic ytterbium and europium complexes are generally inert [143]. [Pg.340]

This force field has also been used to explain the bent geometry of [M((CH3)5C5)2] complexes (M = calcium, strontium, barium, samarium, europium, or ytterbium). However, Hollis et al. set the ring carbon—dummy-dummy—ring carbon dihedral (as described by Doman et al.44) and dummy— metal-dummy bending force constants to zero. Thus, the force field is a points-on-a-sphere model. As one might expect, the calculated structures were... [Pg.113]

The reduction of a carbon-carbon multiple bond by the use of a dissolving metal was first accomplished by Campbell and Eby in 1941. The reduction of disubstituted alkynes to c/ s-alkenes by catalytic hydrogenation, for example by the use of Raney nickel, provided an excellent method for the preparation of isomerically pure c -alkenes. At the time, however, there were no practical synthetic methods for the preparation of pure trani-alkenes. All of the previously existing procedures for the formation of an alkene resulted in the formation of mixtures of the cis- and trans-alkenes, which were extremely difficult to separate with the techniques existing at that time (basically fractional distillation) into the pure components. Campbell and Eby discovered that dialkylacetylenes could be reduced to pure frani-alkenes with sodium in liquid ammonia in good yields and in remarkable states of isomeric purity. Since that time several metal/solvent systems have been found useful for the reduction of C=C and C C bonds in alkenes and alkynes, including lithium/alkylamine, ° calcium/alkylamine, so-dium/HMPA in the absence or presence of a proton donor,activated zinc in the presence of a proton donor (an alcohol), and ytterbium in liquid ammonia. Although most of these reductions involve the reduction of an alkyne to an alkene, several very synthetically useful reactions involve the reduction of a,3-unsaturated ketones to saturated ketones. ... [Pg.478]


See other pages where Ytterbium carbonates is mentioned: [Pg.74]    [Pg.81]    [Pg.468]    [Pg.564]    [Pg.548]    [Pg.74]    [Pg.81]    [Pg.468]    [Pg.564]    [Pg.548]    [Pg.63]    [Pg.65]    [Pg.224]    [Pg.217]    [Pg.113]    [Pg.240]    [Pg.19]    [Pg.251]    [Pg.339]    [Pg.107]    [Pg.390]    [Pg.105]    [Pg.390]    [Pg.283]    [Pg.286]    [Pg.332]    [Pg.938]    [Pg.251]    [Pg.115]    [Pg.2534]    [Pg.76]    [Pg.1]    [Pg.363]    [Pg.289]    [Pg.382]    [Pg.30]    [Pg.484]    [Pg.64]   
See also in sourсe #XX -- [ Pg.227 ]




SEARCH



Ytterbium-metal-carbon

© 2024 chempedia.info