Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Temperature pyrometers

Trying to measure the melt temperature could be deceiving. As an example, an extruded extrudate with a room temperature pyrometer probe will often give a false reading because when the cold probe is inserted, it becomes sheathed with the plastic that has been cooled by the probe. A more effective method is by using what some call the 30/30 method. One simple raises the temperature of the probe about 30F (ISC) above the melt temperature and then keep the probe surrounded with hot melt for 30 s. The easiest way to preheat the probe is to place the probe on, near, or in a hole in the die. By preheating above the anticipated temperature, just prior to inserting it into the melt, then it requires the probe to actually be cooled by the melt. The lowest temperature reached will be the stock temperature. It... [Pg.206]

A pyrometer is a non-contacting temperature measurement instrument that is usually used for temperatures above 500 °C, although with some modifications it can measure temperatures below room temperature. The word pyrometry comes from the Greek words pyro (Are) and meter (measure). The basic principle relies on the notion that all bodies emit thermal radiation proportional to their temperature. Pyrometers detect this thermal radiation and through Planck s law the temperature can be determined. [Pg.187]

Post-test metallographic examination of longitudinal sections of composite weld tensile samples provided data on the location of the fracture and the presence of secondary intergranular cracking. Base metal fracture locations were experienced with K-58 GTA welds at room temperature (RT), K-58 GTA/CW/PR (see Table II for notation) and K-58 GTA/CW/FR welds at all temperatures, Pyromet 538 GTA welds at all temperatures, Pyromet 538 SMA welds at RT, and A-286 GTA welds at RT. Weld FZ fractures were experienced with all 310S SMA welds, K-58 GTA welds below room temperature, K-58... [Pg.155]

If thick steel (which stays in the furnace for a long time) is heated in a hot furnace, the scale becomes mushy, if not liquid. Semimolten scale has caused many erroneous temperature measurements in steel heating furnaces. Scale is an insulator. Its conductance is lower in its solid form, but the high reflectivity of the molten form causes it to act as an insulator. If the scale is not shiny or glossy, optical pyrometers and radiation pyrometers measure scale temperature, but not steel temperature pyrometers indicate a temperature somewhere between furnace ceiling temperature and scale temperature, but not steel temperature. Shiny scale (semimolten) reflects radiation nearly eliminating heat transfer to the load. [Pg.382]

Alundum is used for highly refractory bricks (m.p. 2000-2100 C), crucibles, ref ractory cement and muffles also for small laboratory apparatus used at high temperatures (combustion tubes, pyrometer tubes, etc.). [Pg.26]

The furnace and thermostatic mortar. For heating the tube packing, a small electric furnace N has been found to be more satisfactory than a row of gas burners. The type used consists of a silica tube (I s cm. in diameter and 25 cm. long) wound with nichrome wire and contained in an asbestos cylinder, the annular space being lagged the ends of the asbestos cylinder being closed by asbestos semi-circles built round the porcelain furnace tube. The furnace is controlled by a Simmerstat that has been calibrated at 680 against a bimetal pyrometer, and the furnace temperature is checked by this method from time to time. The furnace is equipped with a small steel bar attached to the asbestos and is thus mounted on an ordinary laboratory stand the Simmerstat may then be placed immediately underneath it on the baseplate of this stand, or alternatively the furnace may be built on to the top of the Simmerstat box. [Pg.470]

The furnace. For heating the tube packing, a small electric furnace E is used, similar to that described in the carbon and hydrogen determination. It is 22 cm. in length and 1 5 cm. in diameter. The furnace is maintained at 680 C., as before, by a calibrated Simmerstat and its temperature is checked from time to time with a bimetal pyrometer. [Pg.484]

Control Devices. Control devices have advanced from manual control to sophisticated computet-assisted operation. Radiation pyrometers in conjunction with thermocouples monitor furnace temperatures at several locations (see Temperature measurement). Batch tilting is usually automatically controlled. Combustion air and fuel are metered and controlled for optimum efficiency. For regeneration-type units, furnace reversal also operates on a timed program. Data acquisition and digital display of operating parameters are part of a supervisory control system. The grouping of display information at the control center is typical of modem furnaces. [Pg.306]

Temperature measurements ranging from 760 to 1760°C are made usiag iron—constantan or chromel—alumel thermocouples and optical or surface pyrometers. Temperature measuriag devices are placed ia multiple locations and protected to allow replacement without iaciaerator shutdown (see... [Pg.55]

The deterrnination of surface temperature and temperature patterns can be made noninvasively using infrared pyrometers (91) or infrared cameras (92) (see Infrared technology and raman spectroscopy). Such cameras have been bulky and expensive. A practical portable camera has become available for monitoring surface temperatures (93). An appropriately designed window, transparent to infrared radiation but reflecting microwaves, as well as appropriate optics, is needed for this measurement to be carried out during heating (see Temperature measurement). [Pg.343]

Above 962°C, the freezing point of silver, temperatures on the ITS-90 ate defined by a thermodynamic function and an interpolation instmment is not specified. The interpolation instmment universally used is an optical pyrometer, manual or automatic, which is itself a thermodynamic device. [Pg.403]

No object can radiate more energy than can a blackbody at the same temperature, because a blackbody ia equiUbrium with a radiation field at temperature T radiates exacdy as much energy as it absorbs. Any object exhibiting surface reflection must have emissivity of less than 1. Pyrometers are usually caUbrated with respect to blackbodies. This can cause a serious problem ia use. The emissivities of some common materials are fisted ia Table 4. [Pg.404]

The filter and screen of the pyrometer shown ia Figure 9 require specific mention. From equation 21 it is evident that the observed radiation must be limited to a narrow bandwidth. Also, peak intensity does not occur at the same wavelength at different temperatures. The pyrometer is fitted with a filter (usually red) having a sharp cut-off, usually at 620 nm. The human eye is insensitive to fight of wavelength longer than 720 nm. The effective pyrometer wavelength is 655 nm. [Pg.404]

It is also necessary to reduce the intensity of the radiation admitted into the pyrometer, because pyrometer lamp filaments should not be subjected to temperatures exceeding 1250°C. The reduction is accomplished by a screen or screens in manually operated secondary pyrometers they are usually neutral-density filters. [Pg.404]

Several types of secondary pyrometer are available. In addition to those that measure by varying lamp current, some pyrometers maintain the lamp at constant current but interpose a wedge of graduated neutral density, whose position is a measure of temperature. Also, automatic pyrometers are available in which the eye is replaced by a detector and the measuring element is operated by a servo. In general, the accuracy of the automatic pyrometer is somewhat less than that achieved manually by a skilled operator. [Pg.404]

The problem of emissivity from real materials has stimulated the study of pyrometers that measure radiation at two different wavelengths. The principle of the two-color pyrometer is that the energy radiated from a source of one wavelength increases with temperature at a rate different from that radiated at another wavelength. Thus temperature can be deduced from the ratio of the intensities at the two wavelengths, regardless of emissivity. Two-color pyrometers are not widely used. [Pg.405]

The temperature in the hottest part of the kiln is closely controlled using automatic equipment and a radiation pyrometer and generally is kept at about 1100—1150°C (see Temperature measurement). Time of passage is about four hours, varying with the kiln mix being used. The rate of oxidation increases with temperature. However, the maximum temperature is limited by the tendency of the calcine to become sticky and form rings or balls in the kiln, by... [Pg.137]

Ash Fusibility. A molded cone of ash is heated in a mildly reducing atmosphere and observed using an optical pyrometer during heating. The initial deformation temperature is reached when the cone tip becomes rounded the softening temperature is evidenced when the height of the cone is equal to twice its width the hemispherical temperature occurs when the cone becomes a hemispherical lump and the fluid temperature is reached when no lump remains (D1857) (18). [Pg.233]

Red Brass Alloys. In forming red brass alloys, which iaclude leaded red and leaded semired brasses, caution should be exercised to prevent gas absorption by flame impingement or the melting of oily scrap, or metal loss through excessive oxidation of the melt surface. To prevent excessive 2iac volatilization, the melt must be poured as soon as it reaches the proper temperature. The melt should be finally deoxidized and cast at ca 1065—1230°C as measured with a pyrometer. Fluxing is usually not needed if clean material has been melted. [Pg.249]

Measurement of the hotness or coldness of a body or fluid is commonplace in the process industries. Temperature-measuring devices utilize systems with properties that vaiy with temperature in a simple, reproducible manner and thus can be cahbrated against known references (sometimes called secondaiy thermometers). The three dominant measurement devices used in automatic control are thermocouples, resistance thermometers, and pyrometers and are applicable over different temperature regimes. [Pg.759]

If the target object is a black body and if the pyrometer has a detector that measures the specific wavelength signal from the object, the temperature of the object can be exactly estimated from Eq. (8-92). While it is possible to coustrucl a physical body that closely approxi-... [Pg.760]

Total Radiation Pyrometers In total radiation pyrometers, the thermal radiation is detec ted over a large range of wavelengths from the objec t at high temperature. The detector is normally a thermopile, which is built by connec ting several thermocouples in series to increase the temperature measurement range. The pyrometer is calibrated for black bodies, so the indicated temperature Tp should be converted for non-black body temperature. [Pg.761]

Accuracy of Pyrometers Most of the temperature estimation methods for pyrometers assume that the objec t is either a grey body or has known emissivity values. The emissivity of the nonblack body depends on the internal state or the surface geometry of the objects. Also, the medium through which the therm radiation passes is not always transparent. These inherent uncertainties of the emissivity values make the accurate estimation of the temperature of the target objects difficult. Proper selection of the pyrometer and accurate emissivity values can provide a high level of accuracy. [Pg.761]

Because indirect-heat calciners frequently require close-fitting gas seals, it is customaiy to support aU parts on a selFcontained frame, for sizes up to approximately 2 m in diameter. The furnace can employ elec tric heating elements or oil and/or gas burners as the heat source for the process. The hardware would be zoned down the length of the furnace to match the heat requirements of the process. Process control is normaUy by shell temperature, measured by thermocouples or radiation pyrometers. When a special gas atmosphere must be maintained inside the cyhnder, positive rotaiy gas se s, with one or more pressurized and purged annular chambers, are employed. The diaphragm-type seal ABB Raymond (Bartlett-Snow TM) is suitable for pressures up to 5 cm of water, with no detectable leakage. [Pg.1210]

Boslough, M.B., and Ahrens, T.J. (1989), A Sensitive Time-Resolved Radiation Pyrometer for Shock-Temperature Measurements above 1500 K, Rev. Sci. Instrum. 60,3711-3716. [Pg.111]

The use of pyrometers in control of the advanced gas turbines is being investigated. Presently, all turbines are controlled based on gassifier turbine exit temperatures, or power turbine exit temperatures. By using the blade metal temperatures of the first section of the turbine the gas turbine is being controlled at its most important parameter, the temperature of the first stage nozzles and blades. In this manner, the turbine is being operated at its real maximum capability. [Pg.55]

The gas turbine eontrol loop eontrols the Inlet Guide Vanes (IGV) and the Gas Turbine Inlet Temperature (TIT). The TIT is defined as the temperature at the inlet of the first stage turbine nozzle. Presently, in 99% of the units, the inlet temperature is eontrolled by an algorithm, whieh relates the turbine exhaust temperature, or the turbine temperature after the gasifier turbine, the eompressor pressure ratio, the eompressor exit temperature, and the air mass flow to the turbine inlet temperature. New teehnologies are being developed to measure the TIT direetly by the use of pyrometers and other speeialized probes, whieh eould last in these harsh environments. The TIT is eontrolled by the fuel flow and the IGV, whieh eontrols the total air mass... [Pg.639]

Combustion analysis This ineludes the use of pyrometers to deteet metal temperatures of both stationary and rotating eomponents sueh as turbine blades. The use of dynamie pressure transdueers to deteet flame instabilities in the eombustor espeeially in the new dry low NO applieations. [Pg.648]

The use of pyrometers in eontrol of the advaneed gas turbines is being investigated. Presently all turbines are eontrolled based on gasifier turbine exit temperatures or power turbine exit temperatures. By measuring the... [Pg.666]

Example. A trap on a 150 psi steam line has been found to be blowing live steam on the basis of contact pyrometer measurements taken immediately upstream and downstream of the trap. The catalog rating of the trap is 5,000Ib/hr at saturation temperature (°F sub-cooled) at 150 psi. [Pg.341]

Equipment Description INDICATORS - TEMPERATURE-RADIATION PYROMETER... [Pg.174]


See other pages where Temperature pyrometers is mentioned: [Pg.364]    [Pg.714]    [Pg.74]    [Pg.329]    [Pg.352]    [Pg.364]    [Pg.714]    [Pg.74]    [Pg.329]    [Pg.352]    [Pg.222]    [Pg.206]    [Pg.215]    [Pg.321]    [Pg.403]    [Pg.226]    [Pg.249]    [Pg.761]    [Pg.761]    [Pg.50]    [Pg.55]    [Pg.434]    [Pg.311]    [Pg.1139]   


SEARCH



Pyrometer, pyrometers

Pyrometer, temperatures measured

Pyrometers

Suction pyrometer, temperatures

Suction pyrometer, temperatures measured

Temperature measurement accuracy pyrometer

Temperature measurement optical pyrometer

Temperature measurement pyrometers

Temperature monitoring pyrometers

Temperature radiation pyrometers

© 2024 chempedia.info