Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Supercritical fluids dynamics

Centrifugai fieids Ultrasound Solar energy Microv/aves Electric fields Plasma technology Supercritical fluids Dynamic (periodic)... [Pg.212]

Other supercritical fluids, dynamic reactors, alternative energy (e.g.,... [Pg.367]

Various equations of state have been developed to treat association ia supercritical fluids. Two of the most often used are the statistical association fluid theory (SAET) (60,61) and the lattice fluid hydrogen bonding model (LEHB) (62). These models iaclude parameters that describe the enthalpy and entropy of association. The most detailed description of association ia supercritical water has been obtained usiag molecular dynamics and Monte Carlo computer simulations (63), but this requires much larger amounts of computer time (64—66). [Pg.225]

Flows are typically considered compressible when the density varies by more than 5 to 10 percent. In practice compressible flows are normally limited to gases, supercritical fluids, and multiphase flows containing gases. Liquid flows are normally considerea incompressible, except for certain calculations involved in hydraulie transient analysis (see following) where compressibility effects are important even for nearly incompressible hquids with extremely small density variations. Textbooks on compressible gas flow include Shapiro Dynamics and Thermodynamics of Compre.ssible Fluid Flow, vol. 1 and 11, Ronald Press, New York [1953]) and Zucrow and Hofmann (G .s Dynamics, vol. 1 and 11, Wiley, New York [1976]). [Pg.648]

A number of analytical techniques such as FTIR spectroscopy,65-66 13C NMR,67,68 solid-state 13 C NMR,69 GPC or size exclusion chromatography (SEC),67-72 HPLC,73 mass spectrometric analysis,74 differential scanning calorimetry (DSC),67 75 76 and dynamic mechanical analysis (DMA)77 78 have been utilized to characterize resole syntheses and crosslinking reactions. Packed-column supercritical fluid chromatography with a negative-ion atmospheric pressure chemical ionization mass spectrometric detector has also been used to separate and characterize resoles resins.79 This section provides some examples of how these techniques are used in practical applications. [Pg.407]

A supercritical fluid exhibits physical-chemical properties intermediate between those of liquids and gases. Mass transfer is rapid with supercritical fluids. Their dynamic viscosities are nearer to those in normal gaseous states. In the vicinity of the critical point the diffusion coefficient is more than 10 times that of a liquid. Carbon dioxide can be compressed readily to form a liquid. Under typical borehole conditions, carbon dioxide is a supercritical fluid. [Pg.11]

SEE is an instrumental approach not unlike PLE except that a supercritical fluid rather than a liquid is used as the extraction solvent. SFE and PLE employ the same procedures for preparing samples and loading extraction vessels, and the same concepts of static and dynamic extractions are also pertinent. SFE typically requires higher pressure than PLE to maintain supercritical conditions and, for this reason, SFE usually requires a restrictor to control better the flow and pressure of the extraction fluid. CO2 is by far the most common solvent used in SFE owing to its relatively low critical point (78 atm and 31 °C), extraction properties, availability, gaseous natural state, and safety. [Pg.758]

Supercritical fluid extraction can be performed in a static system with the attainment of a steady-state equilibrium or in a continuous leaching mode (dynamic mode) for which equilibrium is unlikely to be obtained (257,260). In most instances the dynamic approach has been preferred, although the selection of the method probably depends just as much on the properties of the matrix as those of the analyte. The potential for saturation of a component with limited solubility in a static solvent pool may hinder complete recovery of the analyte. In a dynamic system, the analyte is continuously exposed to a fresh stream of solvent, increasing the rate of extraction from the matrix. In a static systea... [Pg.409]

There are basically three methods of liquid sampling in GC direct sampling, solid-phase extraction and liquid extraction. The traditional method of treating liquid samples prior to GC injection is liquid-liquid extraction (LLE), but several alternative methods, which reduce or eliminate the use of solvents, are preferred nowadays, such as static and dynamic headspace (DHS) for volatile compounds and supercritical fluid extraction (SFE) and solid-phase extraction (SPE) for semivolatiles. The method chosen depends on concentration and nature of the substances of interest that are present in the liquid. Direct sampling is used when the substances to be assayed are major components of the liquid. The other two extraction procedures are used when the pertinent solutes are present in very low concentration. Modem automated on-line SPE-GC-MS is configured either for at-column conditions or rapid large-volume injection (RLVI). [Pg.182]

The several theoretical and/or simulation methods developed for modelling the solvation phenomena can be applied to the treatment of solvent effects on chemical reactivity. A variety of systems - ranging from small molecules to very large ones, such as biomolecules [236-238], biological membranes [239] and polymers [240] -and problems - mechanism of organic reactions [25, 79, 223, 241-247], chemical reactions in supercritical fluids [216, 248-250], ultrafast spectroscopy [251-255], electrochemical processes [256, 257], proton transfer [74, 75, 231], electron transfer [76, 77, 104, 258-261], charge transfer reactions and complexes [262-264], molecular and ionic spectra and excited states [24, 265-268], solvent-induced polarizability [221, 269], reaction dynamics [28, 78, 270-276], isomerization [110, 277-279], tautomeric equilibrium [280-282], conformational changes [283], dissociation reactions [199, 200, 227], stability [284] - have been treated by these techniques. Some of these... [Pg.339]

Dynamic headspace-extraction stripping and purge-and-trap methodology are used most often for determination of M-hcxanc in water and hazardous wastes. Dynamic headspace extraction techniques have been applied to water samples (Roberts and Burton 1994) and sediment (Bianchi et al. 1991). Detection limits of 0.5 g/L were reported for lake water (Roberts and Burton 1994) and 20 ng/kg (ppt) for sediment (Bianchi et al. 1991). Supercritical fluid extraction (SFE) is a relatively new technique that has been applied to -hcxane in soil (Yang et al. 1995). Membrane extraction of M-hexane from water samples has been developed to provide online, continuous monitoring (Wong et al. 1995 Xu and Mitra... [Pg.214]

Partial wet oxidation or controlled wet oxidation is, in a sense, similar to that of catalytic oxidation. Catalytic oxidation provides a conventional catalyst in order to boost and control the oxidative reaction, whereas wet oxidation provides a favored atmosphere for the reaction to occur. More accurately, catalytic oxidation provides a surface upon which intimate contact between the reactants takes place compared to the thermodynamic (or fluid dynamic) contact provided by wet oxidation. In wet oxidation, it can be said that the supercritical water phase acts as the "catalyst for the reaction. [Pg.439]

Supercritical fluid extraction is a potential technique for the purification of pharmaceutical products containing residual solvents. The solubilities of three inhibitors of inflammatory activity, Ketoprofen, Piroxicam, and Nimesulide, in supercritical CO2, measured using a dynamic saturation technique, were reported at pressures between 100 bar and 220 bar and at two temperatures 312.5 K and 331.5 K. The solubilities exhibit a clear dependence on the solvent density, and this has been used to provide a simple and precise correlation of the data (Macnaughton et al., 1996). [Pg.213]

Extractions can be carried out in dynamic, static, or combination modes. In the dynamic mode, the supercritical fluid continuously flows through the sample in the extraction vessel and out the restrictor to the trapping vessel. In the static mode, the supercritical fluid circulates in a loop containing the extraction vessel for some period of time before being released through the restrictor to the trapping vessel. In the combination mode, a static extraction is performed for some period of time, followed by a dynamic extraction. [Pg.615]

Electronic solvation dynamics in non-polar supercritical fluids... [Pg.253]

The most popular method used is a dynamic method, the saturation method. In this technique, the non-volatile, heavy solid solute is loaded into a saturator, or a battery of two or more saturators connected in series, and remains there as a stationary phase during the experiment. In most cases the saturator is in the form of a packed column. At constant pressure, a steady stream of supercritical fluid (solvent) passes through a preheater, where it reaches the desired system temperature. Then this fluid is continuously fed to the bottom of the saturator, and the solute is stripped from the stationary heavy phase in the column. The supercritical fluid saturated with the solute leaves the saturator at the top. [Pg.60]

Koga, K., Study of Stability and Dynamics of Clathrate Hydrates and Supercritical Fluids, Ph.D. Thesis, Kyoto University, Japan (1995). [Pg.254]

Supercritical fluid extraction conditions were investigated in terms of mobile phase modifier, pressure, temperature and flow rate to improve extraction efficiency (104). High extraction efficiencies, up to 100%, in short times were reported. Relationships between extraction efficiency in supercritical fluid extraction and chromatographic retention in SFC were proposed. The effects of pressure and temperature as well as the advantages of static versus dynamic extraction were explored for PCB extraction in environmental analysis (105). High resolution GC was coupled with SFE in these experiments. [Pg.16]

Substantial evidence suggests that in highly asymmetric supercritical mixtures the local and bulk environment of a solute molecule differ appreciably. The concept of a local density enhancement around a solute molecule is supported by spectroscopic, theoretical, and computational investigations of intermolecular interactions in supercritical solutions. Here we make for the first time direct comparison between local density enhancements determined for the system pyrene in CO2 by two very different methods-fluorescence spectroscopy and molecular dynamics simulation. The qualitative agreement is quite satisfactory, and the results show great promise for an improved understanding at a molecular level of supercritical fluid solutions. [Pg.64]

We have utilized the static and dynamic fluorescence characteristics of an environmentally-sensitive solute molecule, PRODAN, to investigate the local solvent composition in binary supercritical fluids. In the two solvent systems studied (C02/1.57 mol% CH3OH and C02/1.44 mol% CH3CN), specific cosolvent-solute interactions are clearly evident. Time-resolved fluorescence emission spectra indicate that the cosolvent-solute interactions become more pronounced with time after excitation. Hence, the local composition of cosolvent around the excited-state solute becomes greater than that surrounding the ground-state solute. That is, the photon-induced increase in excited-state dipole moment drives picosecond cosolvent augmentation about PRODAN. [Pg.107]

Static/Dynamic Selection Valve. This valve is the key feature of our design in that it eliminates the use of a restrictor. Restrictors are the most common means of controlling the pressure or density of a supercritical process. With no restriction, flow is dead-ended (i.e. restricted) via a switching valve in our invention. Supercritical fluid extractions are then conducted in a static (no flow) mode. [Pg.156]

Once the extraction is complete, the static/dynamic selection valve is repositioned to the dynamic mode to allow flow. Subsequently, pressure and density are rapidly reduced to prevent significant losses of the supercritical fluid from the syringe pump tank and the extraction effluent, which is being transferred for collection. With a non-re-stricted transfer, the flow of supercritical fluid effluent is rapid. This desire for rapid depressurization led to the development of a delivery nozzle which would ensure collection of the extracted solutes without losses. Details of this delivery system can be found in the next section. [Pg.157]

Delivery of Extract Delivery Nozzle. Delivery of the extraction effluent is conducted via the six port static/dynamic valve while in the dynamic mode. Generally, extractions are conducted at a high density in the static mode. Once the extraction is complete, the valve is re-positioned into a dynamic evacuation, pressure or density is reduced rapidly to prevent significant losses of the supercritical fluid and the extraction effluent is transferred for collection. The extract leaves through the heated static/dynamic valve to the heated lines then to the delivery nozzle(s). Figure 8 shows a diagram of the delivery nozzle and its components. [Pg.159]

Samples of sand spiked with 36 nitroaromatic compounds, 19 haloethers, and 42 organochlorine pesticides, and a standard reference soil (certified for 13 polynuclear aromatic hydrocarbons, dibenzofuran, and pentachlorophenol) were extracted with supercritical carbon dioxide in a two- or four-vessel supercritical fluid extractor to establish the efficiency of the extraction and the degree of agreement of the parallel extraction recoveries. Furthermore, the many variables that influence the extraction process (e.g., flowrate, pressure, temperature, moisture content, cell volume, sample size, extraction time, modifier type, modifier volume, static versus dynamic extraction, volume of solvent in the collection vessel, and the use of glass beads to fill the void volume) were investigated. [Pg.182]

SFE may be carried out in both off-line and on-line systems. In the off-line case, the receiver may be an empty container, a trap, an analytical column with which further analysis will be carried out, or a container with the solvent. There are several variants of SFE in the off-line system extraction in a dynamic or static system, or in a supercritical fluid recirculating system. [Pg.450]


See other pages where Supercritical fluids dynamics is mentioned: [Pg.85]    [Pg.85]    [Pg.228]    [Pg.2004]    [Pg.170]    [Pg.452]    [Pg.2]    [Pg.426]    [Pg.228]    [Pg.5]    [Pg.253]    [Pg.52]    [Pg.96]    [Pg.102]    [Pg.157]    [Pg.210]    [Pg.226]    [Pg.272]    [Pg.355]    [Pg.180]    [Pg.25]    [Pg.344]   
See also in sourсe #XX -- [ Pg.449 ]




SEARCH



Dynamic similarity 284 Supercritical Fluid Cleaning

Dynamic supercritical-fluid extraction

Fluid dynamics

Supercritical fluid extraction dynamic mode

© 2024 chempedia.info