Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Solute molecules

In a weak electrolyte (e.g. an aqueous solution of acetic acid) the solute molecules AB are incompletely dissociated into ions and according to the familiar chemical equation... [Pg.500]

McMillan-Mayer theory of solutions [1,2], which essentially seeks to partition the interaction potential into tln-ee parts that due to the interaction between the solvent molecules themselves, that due to die interaction between the solvent and the solute and that due to the interaction between the solute molecules dispersed within the solvent. The main difference from the dilute fluid results presented above is that the potential energy u(r.p is replaced by the potential of mean force W(rp for two particles and, for particles of solute in the solvent, by the expression... [Pg.564]

Considering, for simplicity, only electrostatic interactions, one may write the solute-solvent interaction temi of the Hamiltonian for a solute molecule surrounded by S solvent molecules as... [Pg.839]

The relation between the microscopic friction acting on a molecule during its motion in a solvent enviromnent and macroscopic bulk solvent viscosity is a key problem affecting the rates of many reactions in condensed phase. The sequence of steps leading from friction to diflfiision coefficient to viscosity is based on the general validity of the Stokes-Einstein relation and the concept of describing friction by hydrodynamic as opposed to microscopic models involving local solvent structure. In the hydrodynamic limit the effect of solvent friction on, for example, rotational relaxation times of a solute molecule is [ ]... [Pg.853]

As an illustrative example, consider the vibrational energy relaxation of the cyanide ion in water [45], The mechanisms for relaxation are particularly difficult to assess when the solute is strongly coupled to the solvent, and the solvent itself is an associating liquid. Therefore, precise experimental measurements are extremely usefiil. By using a diatomic solute molecule, this system is free from complications due to coupling... [Pg.1173]

By applying a pulling force at a portion of the solute molecule in a specific direction (see chapters of Eichinger et al. and Schulten in this volume), conformational transitions can be induced in specific directions. In order to reconstruct information about the underlying potential function governing protein motion, the irreversible work performed on the system by these forces must be discounted ([Balsera et al. 1997]). [Pg.75]

Fig. 6. Free energies of hydration calculated, for a series of polar and non-polar solute molecules by extrapolating using (3) from a 1.6 ns trajectory of a softcore cavity in water plotted against values obtained using Thermodynamic Integration. The solid line indicates an ideal one-to-one correspondence. The broken line is a line of best fit through the calculated points. Fig. 6. Free energies of hydration calculated, for a series of polar and non-polar solute molecules by extrapolating using (3) from a 1.6 ns trajectory of a softcore cavity in water plotted against values obtained using Thermodynamic Integration. The solid line indicates an ideal one-to-one correspondence. The broken line is a line of best fit through the calculated points.
From the standpoint of thermodynamics, the dissolving process is the estabHsh-ment of an equilibrium between the phase of the solute and its saturated aqueous solution. Aqueous solubility is almost exclusively dependent on the intermolecular forces that exist between the solute molecules and the water molecules. The solute-solute, solute-water, and water-water adhesive interactions determine the amount of compound dissolving in water. Additional solute-solute interactions are associated with the lattice energy in the crystalline state. [Pg.495]

The constants K depend upon the volume of the solvent molecule (assumed to be spherica in slrape) and the number density of the solvent. ai2 is the average of the diameters of solvent molecule and a spherical solute molecule. This equation may be applied to solute of a more general shape by calculating the contribution of each atom and then scaling thi by the fraction of fhat atom s surface that is actually exposed to the solvent. The dispersioi contribution to the solvation free energy can be modelled as a continuous distributioi function that is integrated over the cavity surface [Floris and Tomasi 1989]. [Pg.625]

The angles ot, p, and x relate to the orientation of the dipole nionient vectors. The geonieti y of interaction between two bonds is given in Fig. 4-16, where r is the distance between the centers of the bonds. It is noteworthy that only the bond moments need be read in for the calculation because all geometr ic features (angles, etc.) can be calculated from the atomic coordinates. A default value of 1.0 for dielectric constant of the medium would normally be expected for calculating str uctures of isolated molecules in a vacuum, but the actual default value has been increased 1.5 to account for some intramolecular dipole moment interaction. A dielectric constant other than the default value can be entered for calculations in which the presence of solvent molecules is assumed, but it is not a simple matter to know what the effective dipole moment of the solvent molecules actually is in the immediate vicinity of the solute molecule. It is probably wrong to assume that the effective dipole moment is the same as it is in the bulk pure solvent. The molecular dipole moment (File 4-3) is the vector sum of the individual dipole moments within the molecule. [Pg.125]

Interactions between nonpolar compounds are generally stronger in water than in organic solvents. At concentrations where no aggregation or phase separation takes place, pairwise hydrophobic interactions can occur. Under these conditions, the lowest energy state for a solute molecule is the one in which it is completely surrounded by water molecules. However, occasionally, it will also meet other solute molecules, and form short-lived encounter complexes. In water, the lifetime of these complexes exceeds that in organic solvents, since the partial desolvation that accompanies the formation of these complexes is less unfavourable in water than in organic solvents. [Pg.167]

In a few cases, where solvent effects are primarily due to the coordination of solute molecules with the solute, the lowest-energy solvent configuration is sufficient to predict the solvation effects. In general, this is a poor way to model solvation effects. [Pg.207]

It is reasonable to expect that the effect of a solvent on the solute molecule is, at least in part, dependent on the properties of the solute molecule, such as its size. [Pg.207]

The solvent accessible surface area (SASA) method is built around the assumption that the greatest amount of interaction with the solvent is in the area very close to the solute molecule. This is accounted for by determining a surface area for each atom or group of atoms that is in contact with the solvent. The free energy of solvation AG° is then computed by... [Pg.208]

The Poisson equation assumes that the solvent is completely homogeneous. However, a solvent can have a significant amount of charge separation. An example of a heterogeneous solution would be a polar solute molecule surrounded by water with NaCl in solution. The positive sodium and negative... [Pg.209]

Caution For ionic reactions in solution, solvent effects can play a significant role. These, of course, are neglected in calculations on a single molecule. You can obtain an indication of solvent effects from semi-empirical calculations by carefully adding water molecules to the solute molecule. [Pg.140]

The most widely used particulate support is diatomaceous earth, which is composed of the silica skeletons of diatoms. These particles are quite porous, with surface areas of 0.5-7.5 m /g, which provides ample contact between the mobile phase and stationary phase. When hydrolyzed, the surface of a diatomaceous earth contains silanol groups (-SiOH), providing active sites that absorb solute molecules in gas-solid chromatography. [Pg.564]

The passage of drops of solvent (S) containing a solute (M) through the evacuation chamber, the exit nozzle, skimmers 1 and 2, and into the ion chamber. Molecules of solvent evaporate throughout this passage, causing the drops to get smaller until only solute molecules remain. [Pg.78]

The flow of droplets is directed through a small orifice (Skimmer 1 Figure 12.1) and across a small region that is kept under vacuum by rotary pumps. In this region, approximately 90% of solvent and injected helium is removed from the incipient particle beam. Because the rate of diffusion of a substance is inversely proportional to its molecular mass, the lighter helium and solvent molecules diffuse away from the beam and are pumped away. The heavier solute molecules diffuse more slowly and pass through the first skimmer before they have time to leave the beam the solute is accompanied by residual solvent and helium. [Pg.78]

The particle beam — after linear passage from the evacuation chamber nozzle, through the first and second skimmers, and into the end of the ion source — finally passes through a heated grid immediately before ionization. The heated grid has the effect of breaking up most of the residual small clusters, so residual solvent evaporates and a beam of solute molecules enters the ionization chamber. [Pg.79]

The particle-beam interface (LINC) works by separating unwanted solvent molecules from wanted solute molecules in a liquid stream that has been broken down into droplets. Differential evaporation of solvent leaves a beam of solute molecules that is directed into an ion source. [Pg.80]

A flow of liquid, for example from high-performance liquid chromatography (HPLC), is treated in such a way that most of the solvent evaporates to leave solute molecules that pass into an ionization region (ion source). [Pg.393]

A stream of a liquid solution can be broken up into a spray of fine drops from which, under the action of aligned nozzles (skimmers) and vacuum regions, the solvent is removed to leave a beam of solute molecules, ready for ionization. The collimation of the initial spray into a linearly directed assembly of droplets, which become clusters and then single molecules, gives rise to the term particle beam interface. [Pg.393]

The energy of interaction between a pair of solvent molecules, a pair of solute molecules, and a solvent-solute pair must be the same so that the criterion that = 0 is met. Such a mixing process is said to be athermal. The solvent and solute molecules must be the same size so that the criterion... [Pg.513]

This model then leads us through a thicket of statistical and algebraic detail to the satisfying conclusion that going from small solute molecules to polymeric solutes only requires the replacement of mole fractions with volume fractions within the logarithms. Note that the mole fraction weighting factors are unaffected. [Pg.517]

Since we are explicitly interested in the difference in the sizes of solvent and solute molecules, it is more appropriate to express the values of AU on a per unit volume basis rather than on a molar basis. Accordingly, in Eq. (8.41) we replace the total number of sites N by the total volume of the mixture V and write... [Pg.526]

One way to describe this situation is to say that the colligative properties provide a method for counting the number of solute molecules in a solution. In these ideal solutions this is done without regard to the chemical identity of the species. Therefore if the solute consists of several different components which we index i, then nj = S nj j is the number of moles counted. Of course, the total mass of solute in this case is given by mj = Sjnj jMj j, so the molecular weight obtained for such a mixture is given by... [Pg.543]


See other pages where Solute molecules is mentioned: [Pg.837]    [Pg.1514]    [Pg.2554]    [Pg.2953]    [Pg.330]    [Pg.331]    [Pg.334]    [Pg.383]    [Pg.448]    [Pg.14]    [Pg.17]    [Pg.18]    [Pg.165]    [Pg.207]    [Pg.210]    [Pg.304]    [Pg.560]    [Pg.560]    [Pg.561]    [Pg.564]    [Pg.79]    [Pg.79]    [Pg.93]    [Pg.283]   
See also in sourсe #XX -- [ Pg.681 ]

See also in sourсe #XX -- [ Pg.49 ]




SEARCH



Absorption of Organic Molecules from Aqueous Solutions

Aqueous Solutions Containing Small Hydrophobic Ions or Molecules

Aromatic molecules in solution

Association between solute molecules

Chain-molecule solutions

Classical solution model molecule

Coil Molecules in Solution

Covalent Molecules that Form Ions in Solution Acids and Bases

Device optimization, solution processible small molecules

Diatomic molecules analytic solution

Dilute solutions molecules

Dipolar molecule isotropic solution

Dye Molecules Adsorbed on the Electrode and in Solution

Electron Energy Transfer between Organic Molecules in Solution (Wilkinson)

Electronic Energy Transfer between Organic Molecules in Solution (Wilkinson)

Fate of Excited Molecule in Solution

Flory-Huggins interaction parameter small molecule solutions

Frictional Properties of Polymer Molecules in Dilute Solution

From Giant Micelles to Fluid Membranes Polymorphism in Dilute Solutions of Surfactant Molecules

Interference solute sugar molecule

Micellization water-soluble solute molecules

Molecules in solution

Moment of Polar Molecules in Solution

Organic molecules from aqueous solutions

Organic molecules from aqueous solutions absorption)

Polar molecules in solution

Polarization, solute molecule

Polymer Molecules in Dilute Solution

Polymer solution small-molecule motion

Polymer solution small-molecule rotation

Random walk model, molecule solution

Reactions of Excited Organic Molecules in Vitreous Solutions

Real Molecules in Dilute Solution

Rigid Solute Molecules

Separation of Aqueous Ionized Molecule-Salt Solutions

Shapes of Polymer Molecules in Solution

Single molecules, in solution

Size and Dipole Moment of Water Molecules in Solution

Small Molecule Solutions Including Aqueous Systems

Small Organic Molecules on Solid Phase Target Selection and Solution Studies

Small solute molecules

Small-molecule rotational diffusion in polymer solutions

Small-molecule translational diffusion in polymer solutions

Solute molecules, groupings

Solute molecules, interactions between

Solute-cyclodextrin molecules

Solution Complexes with Neutral Molecules

Solution processible small molecules

Solution-phase small-molecule

Solution-phase small-molecule detection

Solution-processed organic field-effect small molecules

Solutions molecules

Solutions molecules

Solutions of polymer molecules

Solutions to Part III Monofunctional Target Molecules (1-FG TMs)

Solutions to Part IV Difunctional Target Molecules (2-FG TMs)

Solvent around solute molecules

Surfactant molecules in aqueous solution

Synthesis of Small Molecule Donors for High Efficiency Solution Processed Organic Solar Cells

The Solute Molecules

The Three-Dimensional Structure of Protein Molecules in Aqueous Solution

Water with two solute molecules

© 2024 chempedia.info