Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Conventional Catalysts

The information on carbon-supported catalysts has been dominated by cata-lytically active metals that are part of the conventional hydroprocessing catalysts, i.e. Co(Ni)Mo(W). In a sulfided form, the structure of the Co(Ni)-Mo(W)-S active phase in these catalysts should approach that of Type-II phase observed on the y-Al203-supported catalysts after a high-temperature sulfidation. Apparently, there is a sufficient driving force for a direct interaction of carbon with either Mo or sulfur leading to the formation of the Mo-C(S) bonds. Then, in carbon-supported catalysts, the presence of another active phase, i.e. Co-Mo C(S), appears to be plausible. The formation of metal carbides may take place if the supply of sulfur to maintain the catalyst surface in a sulfided form becomes limited, particularly if such a state persists for an extended period.  [Pg.71]

Both model compound mixtures and real feeds have been used for determining catalyst activity. Among the latter, the feeds of petroleum origin, coal-deiived liquids (CDL) and biofeeds have received attention. From the practical applications point of view, the results obtained using real feeds provide a more realistic picture on the performance of catalysts than those obtained using model compounds. For example, the effect of pore-size and pore-volume distribution on catalyst performance may not be accurately identified using model feeds. [Pg.71]


Table 6. Optimal Temperature Range of Conventional Catalyst Systems for Unsaturated Polyesters... Table 6. Optimal Temperature Range of Conventional Catalyst Systems for Unsaturated Polyesters...
The curve in Figure 21 represents SO2 equiUbrium conversions vs temperature for the initial SO2 and O2 gas concentrations. Each initial SO2 gas concentration has its own characteristic equiUbrium curve. For a given gas composition, the adiabatic temperature rise lines can approach the equiUbrium curve but never cross it. The equiUbrium curve limits conversion in a single absorption plant to slightly over 98% using a conventional catalyst. The double absorption process removes this limitation by removing the SO from the gas stream, thereby altering the equiUbrium curve. [Pg.186]

It will also be shown that the absolute electrode potential is not a property of the electrode but is a property of the electrolyte, aqueous or solid, and of the gaseous composition. It expresses the energy of solvation of an electron at the Fermi level of the electrolyte. As such it is a very important property of the electrolyte or mixed conductor. Since several solid electrolytes or mixed conductors based on ZrC>2, CeC>2 or TiC>2 are used as conventional catalyst supports in commercial dispersed catalysts, it follows that the concept of absolute potential is a very important one not only for further enhancing and quantifying our understanding of electrochemical promotion (NEMCA) but also for understanding the effect of metal-support interaction on commercial supported catalysts. [Pg.333]

This is the first and obvious application of Electrochemical Promotion, which was already proposed in 1992.2 Electrochemical promotion allows one to quickly and efficiently identify the electrophobic or electrophilic nature of a catalytic reaction and thus (Rules G1 to G4, Chapter 6) to immediately decide if an electronegative or electropositive, respectively, promoter is needed on a conventional catalyst. It also allows one to identify the optimal coverage, Op, of the promoting electronegative or electropositive species. [Pg.516]

Similar analysis can be carried out for Samples II and III in Icenogle and Klingensmith s paper.(18) The results are tabulated in Table IV. It appears that Sample II (made with the same conventional catalyst as Sample I but without a selectivity control agent (18) also follows the three-site E/E/B model very well. Perhaps surprisingly the reaction probabilities for the two E-sites are virtually the same in Samples I and II (P l = 0.994, P 2 = 0.80). The B-site is indeed different. [Pg.181]

A wealth of structures exists and can be found in the literature [1-3]. Figure 9.1 shows examples of monoliths and arrayed catalysts. MonoHths (Figure 9.1a) consist of parallel channels, whereas arrayed catalysts are built from structural elements that are similar to monolithic structures but containing twisted (zig-zag or skewed) passages and/or interconnected passages (Figure 9.1b,c) or arrays of packets of conventional catalyst particles located in the reaction zone in a structured way, whereby the position of particles inside the packets is random (Figure 9.1d). The latter are mainly used for catalytic distillation and are not discussed further in this chapter. [Pg.189]

Firstly, there are technical reasons concerning catalyst and reactor requirements. In the chemical industry, catalyst performance is critical. Compared to conventional catalysts, they are relatively expensive and catalyst production and standardization lag behind. In practice, a robust, proven catalyst is needed. For a specific application, an extended catalyst and washcoat development program is unavoidable, and in particular, for the fine chemistry in-house development is a burden. For coated systems, catalyst loading is low, making them unsuited for reactions occurring in the kinetic regime, which is particularly important for bulk chemistry and refineries. In that case, incorporated monolithic catalysts are the logical choice. Catalyst stability is crucial. It determines the amount of catalyst required for a batch process, the number of times the catalyst can be reused, and for a continuous process, the run time. [Pg.203]

Characterization of catalytic phenomena at oxide surfaces includes (1) characterization of established catalyst surfaces to improve the catalytic performance, (2) characterization of new catalysts in comparison with conventional catalysts, (3) characterization of specific model surfaces such as single crystals and epitaxial flat surfaces to transfer the knowledge so obtained to catalytic systems or even to create a new type of catalyst, and (4) characterization of catalysis... [Pg.25]

GP 4] [R 11] For methanol conversion over sputtered silver catalyst, no catalyst deactivation at high oxygen methanol ratios (e.g. over 0.2 1) was observed, different from findings in the literature with conventional catalysts and reactors (8.5 vol.-% methanol 10-90% oxygen balance helium 510 °C 10 ms slightly > 1 atm) [72]. [Pg.312]

A flow direction switch occurs at r/2 for a cycle period r set by the plant operator, or it may be initiated by the reactor or recuperator outlet temperature. Startup of the flow-reversal system requires a heating device to bring the catalyst bed or at least the frontal portion up to ignition temperature. This temperature is about 350°C for S02 oxidation using conventional catalysts. [Pg.225]

A common feature of catalysts based on 4 and 5f block elements is that of being able to polymerize both butadiene and isoprene to highly cistactic polymers, independently of the ligands involved. Butadiene, in particular, can reach a cistacticity as high as 99% with uranium based catalysts (3) and cistacticity of > 98% with neodymium based catalysts (4). This high tacticity does not change with the ligand nature (Fig. 1) in contrast to conventional catalysts based on 3-d block elements. A second feature of f-block catalysts is that the cis content of polymer is scarcely... [Pg.34]

In particular, the thiols, like the thioethers, can efficiently be desulfurized over conventional catalysts under milder reaction conditions than those required to accomplish the HDS of the thiophene precursors.158,159... [Pg.101]

Supported palladium oxide is the most effective catalyst used in total methane oxidation and in catalytic oxidation of VOCs [1-5]. However, the activity of the conventional catalysts is not sufficient [5-6]. Recently, the Pd-zeolite catalysts have attracted considerable attention due to their high and stable CH4 conversion efficiency [4-8]. In this work, the effect of the preparation method, the nature of the charge-balancing cations, the palladium loading and the pre-treatment gas nature on the texture, structure and catalytic activity of the Pd-ZSM-5 solids are investigated. [Pg.409]

Fortunately, steric control arising from interactions of alkyl moieties derived from reacting olefins can be enhanced and observed by selection of appropriate reactants. This effect was demonstrated in the work of Lawrence and Ofstead (76), who studied the metathesis of 4-methyl-2-pentene induced by a WCl6Et2OBu4Sn catalyst. This catalyst is not particularly unique, for the steric course of the metathesis of m-2-pen-tene with this system was found to be essentially equivalent to that previously observed (18) with a conventional catalyst employing an or-ganoaluminum cocatalyst. [Pg.470]

Recently, Chaudhari compared the activity of dispersed nanosized metal particles prepared by chemical or radiolytic reduction and stabilized by various polymers (PVP, PVA or poly(methylvinyl ether)) with the one of conventional supported metal catalysts in the partial hydrogenation of 2-butyne-l,4-diol. Several transition metals (e.g., Pd, Pt, Rh, Ru, Ni) were prepared according to conventional methods and subsequently investigated [89]. In general, the catalysts prepared by chemical reduction methods were more active than those prepared by radiolysis, and in all cases aqueous colloids showed a higher catalytic activity (up to 40-fold) in comparison with corresponding conventional catalysts. The best results were obtained with cubic Pd nanosized particles obtained by chemical reduction (Table 9.13). [Pg.239]

In order to evaluate the catalytic characteristics of colloidal platinum, a comparison of the efficiency of Pt nanoparticles in the quasi-homogeneous reaction shown in Equation 3.7, with that of supported colloids of the same charge and of a conventional heterogeneous platinum catalyst was performed. The quasi-homogeneous colloidal system surpassed the conventional catalyst in turnover frequency by a factor of 3 [157], Enantioselectivity of the reaction (Equation 3.7) in the presence of polyvinyl-pyrrolidone as stabilizer has been studied by Bradley et al. [158,159], who observed that the presence of HC1 in as-prepared cinchona alkaloids modified Pt sols had a marked effect on the rate and reproducibility [158], Removal of HC1 by dialysis improved the performance of the catalysts in both rate and reproducibility. These purified colloidal catalysts can serve as reliable... [Pg.80]

As vitally important as the capabilities for experimental planning, screening, and data analysis are the procedures for preparation of inorganic catalysts. In contrast to the procedures usually applied in conventional catalyst synthesis, the synthetic techniques have to be adapted to the number of catalysts required in the screening process. Catalyst production can become a bottleneck and it is therefore necessary to ensure that HTE- and CombiChem-capable synthesis technologies are applied to ensure a seamless workflow. [Pg.385]

Figure 2. Operating and equilibrium curves showing the total S02 conversion for a 4-bed S02 converter (3+1 layout) with intermediate absorption of S03 downstream bed 3 and conventional catalyst in bed 4. The feed gas contains 11% S02 and 10% 02. Figure 2. Operating and equilibrium curves showing the total S02 conversion for a 4-bed S02 converter (3+1 layout) with intermediate absorption of S03 downstream bed 3 and conventional catalyst in bed 4. The feed gas contains 11% S02 and 10% 02.
Catalytic methods, chemo- as well as bio-catalysis, are of vital importance in the conversion of natural products into derivatives (semi-synthesis). In chemo-catalysis conventional catalysts, such as mineral acids, are being replaced by recyclable solid catalysts. Further progress is also expected in cascade processes in which synthesis steps are combined to one pot methods. [Pg.117]

PCT, PETG, PCTG and PCTAs can all be prepared readily via standard melt-phase poly condensation processes [34, 35], The diacid can be delivered via transesterification of the dimethyl esters or via direct esterification of the diacids. Numerous conventional catalyst and catalyst combinations can be employed. The use of a catalyst or catalyst combination is important for the manufacture of polyesters via the melt-phase process and has been well reported in the literature [36-41], Appropriate catalyst systems enable the production of polyesters with high processing rates and high molecular... [Pg.272]


See other pages where Conventional Catalysts is mentioned: [Pg.375]    [Pg.185]    [Pg.161]    [Pg.431]    [Pg.553]    [Pg.383]    [Pg.503]    [Pg.509]    [Pg.511]    [Pg.170]    [Pg.200]    [Pg.235]    [Pg.445]    [Pg.258]    [Pg.391]    [Pg.396]    [Pg.396]    [Pg.10]    [Pg.254]    [Pg.54]    [Pg.387]    [Pg.329]    [Pg.83]    [Pg.28]    [Pg.123]    [Pg.124]    [Pg.123]    [Pg.319]    [Pg.401]    [Pg.136]   


SEARCH



Activity determination conventional catalysts

Carbon dioxide conventional catalysts

Catalyst development conventional methodology

Catalyst layer conventional design

Catalyst-coated membrane conventional

Conventional Catalyst Layers

Conventional preparation methods of catalysts

Water decomposition conventional catalysts

© 2024 chempedia.info