Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Soxhlet extractions supercritical fluid extraction

For many years, the traditional sample preparation methods, such as the Soxhlet extraction, were applied. Most of these methods have been used for more than 100 years, and they mostly require large amounts of organic solvents. These methods were tested during those times, and the analysts were familiar with the processes and protocols required. However, the trends in recent years are automation, short extraction times, and reduced organic solvent consumption. Modern approaches in solid sample preparation include microwave-assisted solvent extraction (MASE), pressurized liquid extraction, accelerated solvent extraction (ASE), matrix solid-phase dispersion (MSPD), automated Soxhlet extraction, supercritical fluid extraction (SEE), gas-phase extraction, etc. [Pg.2102]

Braga et al. ° compared the efficiencies of several processes, i.e., hydrodistillation, low pressnre solvent extraction, and Soxhlet and supercritical fluid extraction. For each process, the inflnences of several parameters (duration, temperature, nature of solvent) were also evalnated. These authors concluded that the Soxhlet method performed with ethanol/isopropanol 1/100 v/v for 2 hr and 30 min was the most effective. Snn et al. nsed solid phase extraction to concentrate (nine times) a... [Pg.78]

Extraction of neonicotinoid residues from soil is much more difficult than their extraction from plant or water samples. Soil residues could exist as bound residue . Various extraction methods such as organic solvent extraction, supercritical fluid extraction (SEE), Soxhlet extraction and sonication have been used. Some extraction methods are described in the following. [Pg.1139]

Saponins from plant materials can be extracted using different techniques and solvents. The conventional techniques for saponin extraction used soxhlet, liquid-liquid or solid-liquid extraction (Berhow et al. 2002 Hassan et al. 2010a, b). These methods consume a lot of solvent, time and may lead to potentially deleterious degradation of labile compounds (Kerem et al. 2005). Therefore, in recent years, new extraction techniques include accelerated solvent extraction, supercritical fluid extraction, solid-phase microextraction, sonication, extraction with supercritical or subcritical water, and microwave-assisted extraction have been developed and are considered to be more efficient than the conventional methods (Wu et al. 2001 Kerem et al. 2005 Ligor et al. 2005 Gii lii-Ustundag and Mazza 2007). Ultrasonication-assisted extraction of ginseng saponins was about three times faster than the liquid-liquid extraction and can be carried out at lower temperature (Wu et al. 2001). Kerem et al. (2005) reported that methanol- microwave assisted method to extract saponin of chiclqtea proved to be faster and more efficient than soxhlet extraction. [Pg.317]

Analytical Supercritical Fluid Extraction and Chromatography Supercritical fluids, especially CO9, are used widely to extrac t a wide variety of solid and hquid matrices to obtain samples for analysis. Benefits compared with conventional Soxhlet extraction include minimization of solvent waste, faster extraction, tunabihty of solvent strength, and simple solvent removal with minimal solvent contamination in the sample. Compared with high-performance liquid chromatography, the number of theoretical stages is higher in... [Pg.2004]

S, Soxhlet S , Soxtec R, reflux SF, shake-flask US, ultrasonics SFE, supercritical fluid extraction MAE, microwave-assisted extraction PFE, pressurised fluid extraction (ASE , ESE ) D/P, dissolution/precipitation. [Pg.137]

Snyder et al. [20] have compared supercritical fluid extraction with classical sonication and Soxhlet extraction for the extraction of selected pesticides from soils. Samples extracted with supercritical carbon dioxide modified with 3% methanol at 350atm and 50°C gave a =85% recovery of organochlorine insecticides including Dichlorvos, Endrin, Endrin aldehyde, p,p -DDT mirex and decachlorobiphenyl (and organophosphorus insecticides). [Pg.210]

Snyder et al. [94] compared supercritical extraction with classical sonication and Soxhlet extraction for the extraction of selected organophosphorus insecticides from soil. Samples extracted with supercritical carbon dioxide modified with 3% methanol at 350atm and 50°C gave a =85% recovery of Diazinon (diethyl-2-isopropyl-6-methyl-4-pyrimidinyl phosphorothiodate or 0,0 diethyl-0-(2-isopropyl-6-methyl-4-pyrimidyl) phosphorothioate). Ronnel (or Fenchlorphos) 0,0-dimethyl-0-2,4,5 trichlorophenol phosphorothiodate), Parathion ethyl (diethyl-p-nitrophenyl (phosphorothioate), Tetrachlorovinphos (trans,-2-chloro-l-(2,4,5 trichlorophenyl) vinyl (chlorophenyl-O-methylphenyl phosphorothioate) and Methiadathion. Supercritical fluid extraction with methanol modified carbon dioxide has been applied to the determination of organophosphorus insecticides in soil [260]. [Pg.234]

Snyder et al. [23] compared supercritical fluid extraction with classical sonication and Soxhlet extraction from the analysis of selected insecticides in soils. [Pg.300]

Snyder JL, Grab RL, McNally ME, et al. 1992. Comparison of supercritical fluid extraction with classical sonication and soxhlet extractions for selected pesticides. Anal Chem 64 1940-1946. [Pg.188]

S.B. Hawthorne, C.B. Grabanski, E. Martin and D.J. Miller, Comparison of Soxhlet extraction, pressurized liquid extraction, supercritical fluid extraction and subcritical water extraction for environmental solids recovery, selectivity and effects on sample matrix. J. Chromatogr.A 892 (2000) 421 133. [Pg.55]

Supercritical fluid extraction (SFE), microwave-assisted extraction (MAE) and Soxhlet extraction under various experimental conditions were applied for spiked poly(vinyl) chloride samples. Extracted dyes were separated in an ODS column (250 X 4.6 mm i.d. particle size 5 jum) using methanol as the mobile phase. Dyes are well separated by this method as demonstrated in Fig. 3.59. The optimal parameters of the extraction methods are compiled in Table 3.23. Recoveries depended on both the type of extraction method and the chemical structure of the dye. It was found that the highest recovery can be obtained by MAE and the extraction efficacy was the lowest for Solvent red 24 [129],... [Pg.440]

Ideally, the pollutants to be determined should be removed from the matrix as completely as possible with a minimum amount of the other non-target components. This type of selectivity was certainly anticipated from supercritical fluid extraction. However, trace organic pollutants cover a wide range of polarity, volatility, and molecular size, making selective extraction very difficult to achieve. Currently the most popular extraction methods are Soxhlet [191,400, 402-404], blending [189, 408, 409, 411-455], liquid column extraction and ultrasonic extraction [456], and more recently supercritical fluid extraction [386,456-463]. [Pg.62]

The main comparisons between extraction methods have been made between the Soxhlet, ultrasonication, and supercritical fluid extraction [377, 398,456,461,462]. This has primarily been prompted by the need to evaluate critically the relative merits of SFE as an alternative to the more established methods. Richards and Campbell [456] made a comparison between SFE, Soxhlet, and sonication methods for the determination of some priority pollutants in soil. The SFE apparatus was the same, relatively standard system as described by Campbell et al. [457] with the addition of a C02 cryogenic trap to... [Pg.62]

Soxhlet, sonication, supercritical fluid, subcritical or accelerated solvent, and purge-and-trap extraction have been introduced into a variety of methods for the extraction of contaminated soil. Headspace is recommended as a screening method. Shaking/vortexing is adequate for the extraction of petroleum hydrocarbons in most environmental samples. For these extraction methods, the ability to extract petroleum hydrocarbons from soil and water samples depends on the solvent and the sample matrix. Surrogates (compounds of known identity and quantity) are frequently added to monitor extraction efficiency. Environmental laboratories also generally perform matrix spikes (addition of target analytes) to determine if the soil or water matrix retains analytes. [Pg.161]

As its name suggests, supercritical fluid extraction (SEE) relies on the solubilizing properties of supercritical fluids. The lower viscosities and higher diffusion rates of supercritical fluids, when compared with those of liquids, make them ideal for the extraction of diffusion-controlled matrices, such as plant tissues. Advantages of the method are lower solvent consumption, controllable selectivity, and less thermal or chemical degradation than methods such as Soxhlet extraction. Numerous applications in the extraction of natural products have been reported, with supercritical carbon dioxide being the most widely used extraction solvent. However, to allow for the extraction of polar compounds such as flavonoids, polar solvents (like methanol) have to be added as modifiers. There is consequently a substantial reduction in selectivity. This explains why there are relatively few applications to polyphenols in the literature. Even with pressures of up to 689 bar and 20% modifier (usually methanol) in the extraction fluid, yields of polyphenolic compounds remain low, as shown for marigold Calendula officinalis, Asteraceae) and chamomile Matricaria recutita, Asteraceae). " ... [Pg.3]

Extraction of fat by supercritical carbon dioxide was investigated as an important option for minimizing the expanded use of frequently flammable and carcinogenic solvents in food analysis. Unfortunately, the presence of moisture in foods has an adverse effect on the quantitative extraction of fat by supercritical fluid extraction (SEE). Hence, samples have to be lyophilized first. The total fat content of freeze-dried meat and oilseed samples was found to be comparable to values derived from Soxhlet-extracted samples (26). Besides, only small amounts of residual lipids could be recovered by an additional extraction of the SFE-extracted matrix by the Bligh and Dyer solvent extraction procedure. As far as the minor constituents are concerned, it was found that the extraction recovery ranged from 99% for PC to 88% for PA. Hence, Snyder et al. concluded that SFE can be used as a rapid, automated method to obtain total fat, including total phospholipids, from foods (26). [Pg.256]

Extraction In order to extract the toxin from the matrix, solvents or mixtures of solvents (methylene chloride, bicarbonate solution, methanol-water, chloroform-water) are used. Two main types of apparatus are commonly used the mechanical shaker (Ultra-Turrax homogenizer, multi-Wrist, magnetic stirrer) or High-Speed Waring Blenders. Other, rarely used extraction procedures are Soxhlet-type extractors and, more recently, supercritical fluid extraction. The time of extraction ranges from a few minutes (3 - 5) to 1 hour, depending on the procedure employed. [Pg.499]

Environmental applications of SFE appear to be the most widespread in the literature. A typical example is the comparison of extraction efficiency for 2,3,7,8 -tetrachlorodibenzo-p-dioxin (2,3,7,8-TCDD) from sediment samples using supercritical fluid extraction and five individual mobile phases with Soxhlet extraction was made (101). The mobile phases, carbon dioxide, nitrous oxide, pure and modified with 2% methanol as well as sulfur hexafluoride were examined. Pure nitrous oxide, modified carbon dioxide and modified nitrous oxide systems gave the recoveries in the acceptable range of 80 to 100%. Carbon dioxide and sulfur hexafluoride showed recoveries of less than 50% under identical conditions. Classical Soxhlet recoveries by comparison illustrated the poorest precision with average extraction efficiencies of less than 65%. Mobile phase choice, still as yet a major question in the science of supercritical fluid extraction, seems to be dependent upon several factors polarity of the solute of interest, stearic interactions, as well as those between the matrix and the mobile phase. Physical parameters of the solute of interest, as suggested by King, must also be considered. Presently, the science behind the extraction of analytes of interest from complex matrices is not completely understood. [Pg.15]

Supercritical Fluid Extraction versus Soxhlet Sample Preparation... [Pg.224]

Meyer et al. [173] showed that supercritical fluid extraction results can give recoveries comparable to Soxhlet extraction methods, even for soils with high carbon contents. McNally et al. [174] have studied factors affecting the supercritical fluid extraction of soils. It was shown that soil type affects the recovery of moderately polar analytes. In general the organic carbon content of the soil governs analytical recovery. [Pg.13]

Various other extraction techniques have been used to recover hydrocarbons from soil including microwave-assisted extraction [19] and supercritical fluid extraction coupled with on-line infrared spectroscopy detection [20,21], The on-line SFA infrared procedure produced results similar to those obtained by Soxhlet extraction. [Pg.90]

Chlordane co2 Comparison of supercritical fluid extraction, accelerated solvent extraction and Soxhlet extraction [275, 277-280]... [Pg.115]

Comparison of simple methanol extraction, Soxhlet extraction, pressurized liquid extraction (PLE), and supercritical fluid extraction (SFE) shows (Clausen et al., 2003) that DEHP can be extracted relatively easily from dust and that the effectiveness does not differ significantly between the different extraction methods (see Figure 2.4). Selection of the optimal method depends on several circumstances, for example number of extraction cycles, instrument accessibility and the analysis method. However, PLE using cyclohexane/acetone was chosen as the preferred extraction method in the field study. [Pg.30]

A method for determining CDDs in municipal incinerator fly ash has been reported (Alexandrou and Pawliszyn 1990). The method uses supercritical fluid extraction (SFE) to recover CDDs from fly ash samples prior to GC. Supercritical fluid extraction is faster and less expensive than the typically used Soxhlet extraction and gives quantitative removal of CDDs and CDFs from fly ash. Extracts obtained using SFE will still require additional clean-up steps prior to analysis. Supercritical C02 has also been used to assist solvent-based extraction of CDDs from soils (Friedrich and Kleibohmer 1997). In this case, the supercritical fluid was combined with accelerated solvent extraction (liquid extractions conducted under elevated temperature and pressure) to provide good recoveries relative to Soxhlet extractions. [Pg.561]

This chapter covers techniques for the extraction of semivolatile organics from solid matrices. The focus is on commonly used and commercially available techniques, which include Soxhlet extraction, automated Soxhlet extraction, ultrasonic extraction, supercritical fluid extraction (SFE), accelerated solvent extraction (ASE), and microwave-assisted extraction (MAE). The underlying principles, instrumentation, operational procedures, and selected applications of these techniques are described. In a given application, probably all the methods mentioned above will work, so it often boils down to identifying the most suitable one. Consequently, an effort is made to compare these methodologies. [Pg.139]

Removal of extractables from an elastomer or plastic matrix can be accomplished by a variety of techniques, including solvent extraction (e.g., reflux and Soxhlet), supercritical fluid extraction, thermal evolution, etc. Jenke has thoroughly discussed and classified extraction strategies for container closure system components associated with a drug product leachables assessment. His discussion is based on two so-called directives paraphrased as follows ... [Pg.1698]

This chapter discusses the principal aspects of the technique in its two modes, the devices typically employed by each and their amenability to coupling with subsequent operations of the analytical process. Also, the main analytical applications of both modes in analytical chemistry are described, and their advantages and disadvantages with respect to alternative techniques such as Soxhlet, ultrasound-assisted, microwave-assisted or supercritical fluid extraction, discussed. [Pg.234]

Drugs [130] and vitamins [131] in medical foods compounds such as felodipine [132] and diltiazem [133] in tablets and corticosteroid residues in bovine liver [134] have also been extracted by ASE, with results comparable to those of conventional techniques such as Soxhlet, ultrasonic or supercritical fluid extraction. [Pg.252]

As in ASE, the efficiency of DPHSE for extracting compounds from soils has been compared with that of other techniques such as Soxhlet, microwave-assisted (MAE) and, especially, supercritical fluid extraction (SEE). [Pg.273]


See other pages where Soxhlet extractions supercritical fluid extraction is mentioned: [Pg.1411]    [Pg.6]    [Pg.1201]    [Pg.1202]    [Pg.1339]    [Pg.6]    [Pg.1201]    [Pg.1202]    [Pg.114]    [Pg.242]    [Pg.916]    [Pg.135]    [Pg.452]    [Pg.133]    [Pg.3]    [Pg.46]    [Pg.216]    [Pg.137]    [Pg.699]    [Pg.224]    [Pg.303]    [Pg.311]    [Pg.115]    [Pg.242]    [Pg.238]    [Pg.331]   


SEARCH



Extractants supercritical fluid

Extraction, Soxhlet

Fluid extraction

Soxhlet

Supercritical extractants

Supercritical extraction

Supercritical fluid extraction

Supercritical fluid extraction fluids

© 2024 chempedia.info