Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Detection infrared spectroscopy

Autoionization-detected infrared spectroscopy (ADIR, which is a new technique)66 makes it possible to record infrared spectra of isolated bare molecular cations in molecular beams. Conventional time-of-flight mass spectroscopy (at zero kinetic energy) and photoelectron spectroscopy also enable the study of such cations. [Pg.415]

N—H vibrational frequencies of substituted anilines are linearly correlated with the sigma values with a positive slope, while a plot of vibrational frequencies of the anilinium ions (obtained by autoionization-detected infrared spectroscopy) results in a similar plot showing a negative slope66. [Pg.422]

Direct experimental evidence that an aromatic could form a C H- - -O hydrogen bond was obtained by Mikami s group in 2004 by fluorescence-detected infrared spectroscopy [155], when tetrafluorobenzene was paired with water in the gas phase. Accompanying MP2 calculations led to the geometry pictured in Fig. 12, wherein the bent CH- - -O bond is combined with a OH- - -F interaction. [Pg.279]

Venkatesan, V., Fujii, A., Ebata, T., and Mikami, N. (2004) A direct experimental evidence for an aromatic C-H- -O hydrogen bond by fluorescence-detected infrared spectroscopy, Chem. Phys. Lett. 394, 45-48. [Pg.292]

Surface species during the reaction were detected by Fourier transfonn infrared spectroscopy, using the Si-Cl... [Pg.2938]

The section on Spectroscopy has been expanded to include ultraviolet-visible spectroscopy, fluorescence, Raman spectroscopy, and mass spectroscopy. Retained sections have been thoroughly revised in particular, the tables on electronic emission and atomic absorption spectroscopy, nuclear magnetic resonance, and infrared spectroscopy. Detection limits are listed for the elements when using flame emission, flame atomic absorption, electrothermal atomic absorption, argon ICP, and flame atomic fluorescence. Nuclear magnetic resonance embraces tables for the nuclear properties of the elements, proton chemical shifts and coupling constants, and similar material for carbon-13, boron-11, nitrogen-15, fluorine-19, silicon-29, and phosphorus-31. [Pg.1287]

The formation of such materials may be monitored by several techniques. One of the most useful methods is and C-nmr spectroscopy where stable complexes in solution may give rise to characteristic shifts of signals relative to the uncomplexed species (43). Solution nmr spectroscopy has also been used to detect the presence of soHd inclusion compound (after dissolution) and to determine composition (host guest ratio) of the material. Infrared spectroscopy (126) and combustion analysis are further methods to study inclusion formation. For general screening purposes of soHd inclusion stmctures, the x-ray powder diffraction method is suitable (123). However, if detailed stmctures are requited, the single crystal x-ray diffraction method (127) has to be used. [Pg.74]

Air Monitoring. The atmosphere in work areas is monitored for worker safety. Volatile amines and related compounds can be detected at low concentrations in the air by a number of methods. Suitable methods include chemical, chromatographic, and spectroscopic techniques. For example, the NIOSH Manual of Analytical Methods has methods based on gas chromatography which are suitable for common aromatic and aHphatic amines as well as ethanolamines (67). Aromatic amines which diazotize readily can also be detected photometrically using a treated paper which changes color (68). Other methods based on infrared spectroscopy (69) and mass spectroscopy (70) have also been reported. [Pg.264]

Impurities in bromine may be deterrnined quantitatively (54). Weighing the residue after evaporation of a bromine sample yields the total nonvolatile matter. After removing the bromine, chloride ion may be deterrnined by titration with mercuric nitrate, and iodide ion by titration with thiosulfate water and organic compounds may be detected by infrared spectroscopy sulfur may be deterrnined turbidimetricaHy as barium sulfate and heavy metals may be deterrnined colorimetricaHy after conversion to sulfides. [Pg.288]

Oxiranes are more readily detected by infrared spectroscopy than aziridines and thiiranes. Bands for steroid oxiranes appear consistently either between 800-900 cm or 1035-1050 cm h The oxirane band at 1250 cm is not... [Pg.18]

Depending on the reagent ratio, oxalyl chloride reacts with fluorobenzene m the presence of aluminum chloride to afford either 4-fluorobenzoyl chloride or 4,4 -difluorobenzophenone [ii] (equation 22). Phosgene, detected by infrared spectroscopy, is an intermediate. [Pg.415]

Pseudo-/ -DL-gi Zopyranose triacetate (36) was prepared by hydroxyla-tion of the enetriol triacetate (32) and converted to the corresponding pentol and pentaacetate. The intermediate 32 was obtained by Diels-Alder reaction (200°C., two days) of rans/ rans-l,4-diacetoxy-l,3-buta-diene with allyl acetate. The double bond was surprisingly inert to the usual additive reagents and not detectable by infrared spectroscopy because of near-symmetry, but it did react with tert-butyl hydroxperoxide to give 36 in about 30% yield (27). [Pg.61]

To measure gas and water vapor permeability, a film sample is mounted between two chambers of a permeability cell. One chamber holds the gas or vapor to be used as the permeant. The permeant then diffuses through the film into a second chamber, where a detection method such as infrared spectroscopy, a manometric, gravimetric, or coulometric method isotopic counting or gas-liquid chromatography provides a quantitative measurement (2). Die measurement depends on the specific permeant and the sensitivity required. [Pg.241]

No epoxy groups were detectable in the cured polymer by infrared spectroscopy. [Pg.352]

Frequently, electrochemical information can be interpreted better in the presence of additional nonelectrochemical information. Typically, however, there is one significant restriction electrochemical and spectroscopic techniques often do not detect exactly the same mechanisms. With spectroscopic measurements (e.g., infrared spectroscopy), products that are formed by electrochemical processes may be detected. In other cases (luminescence techniques) mechanisms may be found by which charge carriers are trapped and recombine. Other techniques (electroreflection studies) allow the nature of electronic transitions to be determined and provide information on the presence or absence of an electric field in the surface of an electrode. With no traditional technique, however, is it... [Pg.435]

The first Raman and infrared studies on orthorhombic sulfur date back to the 1930s. The older literature has been reviewed before [78, 92-94]. Only after the normal coordinate treatment of the Sg molecule by Scott et al. [78] was it possible to improve the earlier assignments, especially of the lattice vibrations and crystal components of the intramolecular vibrations. In addition, two technical achievements stimulated the efforts in vibrational spectroscopy since late 1960s the invention of the laser as an intense monochromatic light source for Raman spectroscopy and the development of Fourier transform interferometry in infrared spectroscopy. Both techniques allowed to record vibrational spectra of higher resolution and to detect bands of lower intensity. [Pg.47]

If gaseous S2O-SO2 mixtures are dissolved in dry solvents such as CS2, CCI4, CHCI3, CH2CI2, and liquid SO2 at temperatures between -75 and -1-25 °C, intense yellow solutions of polysulfuroxides are obtained which have been characterized only very poorly [19]. In contrast to the opinion of some authors [20], S2O cannot be detected in such solutions, e.g., by infrared spectroscopy. Most probably, mixtures of cyclic polysulfuroxides are present besides SO2 (see below, in particular the preparation of S5O), e.g. ... [Pg.207]

High-pressure carbonylation of CpMo(CO)jR yields the very unstable acyls. The acetyl was detected by infrared spectroscopy but not isolated (70), whereas the propionyl decomposes readily to [CpMo(CO)3]2 (172). [Pg.118]

Methods of detection, metabolism, and pathophysiology of the brevetoxins, PbTx-2 and PbTx-3, are summarized. Infrared spectroscopy and innovative chromatographic techniques were examined as methods for detection and structural analysis. Toxicokinetic and metabolic studies for in vivo and in vitro systems demonstrated hepatic metabolism and biliary excretion. An in vivo model of brevetoxin intoxication was developed in conscious tethered rats. Intravenous administration of toxin resulted in a precipitous decrease in body temperature and respiratory rate, as well as signs suggesting central nervous system involvement. A polyclonal antiserum against the brevetoxin polyether backbone was prepared a radioimmunoassay was developed with a sub-nanogram detection limit. This antiserum, when administered prophylactically, protected rats against the toxic effects of brevetoxin. [Pg.176]

To detect adulteration of wine. Bums et al. (2002) found that the ratios of acetylated to p-coumaroylated conjugates of nine characteristic anthocyanins served as useful parameters to determine grape cultivars for a type of wine. Our laboratory utilized mid-infrared spectroscopy combined with multivariate analysis to provide spectral signature profiles that allowed the chemically based classification of antho-cyanin-containing fruits juices and produced distinctive and reproducible chemical fingerprints, making it possible to discriminate different juices. " This new application of ATR-FTIR to detect adulteration in anthocyanin-containing juices and foods may be an effective and efficient method for manufacturers to assure product quality and authenticity. [Pg.497]

Downey, G. and Kelly, J.D., Detection and quantification of apple adulteration in diluted and sulfited strawberry and raspberry purees using visible and near-infrared spectroscopy, J. Agric. Food Chem., 52, 204, 2004. [Pg.502]

Figure 5.11 (Crisp Wilson, 1974b) shows the time-dependent variation of the concentration of soluble ions in setting and hardening cements. Note that the concentrations of aluminium, calcium and fluoride rise to maxima as they are released from the glass. After the maximum is reached the concentration of soluble ions decreases as they are precipitated. Note that this process is much more rapid for calcium than for aluminium and the sharp decline in soluble calcium corresponds to gelation. This indication is supported by information from infrared spectroscopy which showed that gelation (initial set) was caused by the precipitation of calcium polyacrylate. This finding was later confirmed by Nicholson et al. (1988b) who, using Fourier transform infrared spectroscopy (FTIR), found that calcium polyacrylate could be detected in the cement paste within one minute of mixing the cement. There was no evidence for the formation of any aluminium polyacrylate within nine minutes and substantial amounts are not formed for about one hour (Crisp et al, 1974). Figure 5.11 (Crisp Wilson, 1974b) shows the time-dependent variation of the concentration of soluble ions in setting and hardening cements. Note that the concentrations of aluminium, calcium and fluoride rise to maxima as they are released from the glass. After the maximum is reached the concentration of soluble ions decreases as they are precipitated. Note that this process is much more rapid for calcium than for aluminium and the sharp decline in soluble calcium corresponds to gelation. This indication is supported by information from infrared spectroscopy which showed that gelation (initial set) was caused by the precipitation of calcium polyacrylate. This finding was later confirmed by Nicholson et al. (1988b) who, using Fourier transform infrared spectroscopy (FTIR), found that calcium polyacrylate could be detected in the cement paste within one minute of mixing the cement. There was no evidence for the formation of any aluminium polyacrylate within nine minutes and substantial amounts are not formed for about one hour (Crisp et al, 1974).

See other pages where Detection infrared spectroscopy is mentioned: [Pg.415]    [Pg.376]    [Pg.415]    [Pg.376]    [Pg.1948]    [Pg.295]    [Pg.166]    [Pg.431]    [Pg.511]    [Pg.25]    [Pg.366]    [Pg.106]    [Pg.224]    [Pg.416]    [Pg.444]    [Pg.253]    [Pg.341]    [Pg.300]    [Pg.358]    [Pg.82]    [Pg.100]    [Pg.33]    [Pg.136]    [Pg.384]    [Pg.177]    [Pg.117]    [Pg.6]    [Pg.438]    [Pg.551]   
See also in sourсe #XX -- [ Pg.227 ]




SEARCH



Autoionization-detected infrared spectroscopy

Detection by Fourier-transform Infrared Spectroscopy (Carbonyl Metalloimmuno Assay, CMIA)

Detection spectroscopy

Fourier transform infrared spectroscopy functional groups detection

Infrared Spectroscopy An Instrumental Method for Detecting Functional Groups

Infrared detection

Infrared spectroscopy interstellar molecule detection

Methods of Detection Infrared and Raman Spectroscopy

© 2024 chempedia.info