Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Selectivity methacrylate

Historical hst prices for bulk quantities of selected methacrylates ate given in Table 7 (134). The historical price trends reflect the combined effects of improved manufacturing capabihty and the market price of cmde oil, the basic raw material to which these materials are ultimately tied. [Pg.253]

It is of much interest to compare polymer monoliths with monolithic silica columns for practical purposes of column selection. Methacrylate-based polymer monoliths have been evaluated extensively in comparison with silica monoliths (Moravcova et al., 2004). The methacrylate-based capillary columns were prepared from butyl methacrylate, ethylene dimethacrylate, in a porogenic mixture of water, 1-propanol, and 1,4-butanediol, and compared with commercial silica particulate and monolithic columns (Chromolith Performance). [Pg.149]

TABLE 1. Selected polymeric positive and negative tone ptotoresists activated at 193 nm prepared by free radical polymerization using selected methacrylate monomers. [Pg.629]

Fig. 48. General structures of selected methacrylic-based betaines. Fig. 48. General structures of selected methacrylic-based betaines.
Most acrylates are polymerized by both radical and anionic initiations, with the former being the more commonly used. In all cases the heat of polymerization must be carefully controlled to avoid runaway reactions. The values of the heat of polymerization for selected methacrylates are listed in literature [18]. In general, the rate of polymerization and the average molar mass must be controlled by the initiator and monomer concentration and the reaction temperature. In all cases the use of high-purity monomers is important for proper polymerization conditions. Therefore, the removal of inhibitors is necessary. Phenolic inhibitors such as hydroquinone, 4-methoxyphenol, or aromatic amines are usually removed by alkaline or acidic extraction [11,19]. Otherwise, the... [Pg.251]

Selective methacrylation of the three OHs in chohc acid have been studied and the reactivity order is found to be C3 > C12 > C7 [213]. Attempts have also been made to improve the hydrophilicity of the bile acid-based (co)polymer conjugates and to explore their properties and potential application in aqueous systems. The OH at C3 position has been turned into NH2 and the methacrylamide derivatives of bile acids have been compared with methacrylate derivatives. The former are found to undergo more feasible (free radical) polymerization resulting in more hydro-phihc polymer [214, 215]. The stereoisomerism of the polymerizable moieties has also been studied. The 3p-epimers are found to polymerize more easily than 3a-epimers moreover, the polymer of the 3(3-epimers presents higher hydrophilicity. Further increased hydrophilicity is achieved by copolymerization with hydrophilic monomers, i.e., methacrylic acid and 2-hydroxyethyl methacrylate, and by selective... [Pg.183]

Amberlite IRC-50 3.5 1.25 Methacrylic acid-DVB. Selectivity adsorbs organic gases such as antibiotics, alkaloids, peptides, and amino acids. Use pH >5. [Pg.1112]

Dehydrogenation of Propionates. Oxidative dehydrogenation of propionates to acrylates employing vapor-phase reactions at high temperatures (400—700°C) and short contact times is possible. Although selective catalysts for the oxidative dehydrogenation of isobutyric acid to methacrylic acid have been developed in recent years (see Methacrylic ACID AND DERIVATIVES) and a route to methacrylic acid from propylene to isobutyric acid is under pilot-plant development in Europe, this route to acrylates is not presentiy of commercial interest because of the combination of low selectivity, high raw material costs, and purification difficulties. [Pg.156]

The white cell adsorption filter layer is typically of a nonwoven fiber design. The biomaterials of the fiber media are surface modified to obtain an optimal avidity and selectivity for the different blood cells. Materials used include polyesters, eg, poly(ethylene terephthalate) and poly(butylene terephthalate), cellulose acetate, methacrylate, polyamides, and polyacrylonitrile. Filter materials are not cell specific and do not provide for specific filtration of lymphocytes out of the blood product rather than all leukocytes. [Pg.523]

Selected physical properties of various methacrylate esters, amides, and derivatives are given in Tables 1—4. Tables 3 and 4 describe more commercially available methacrylic acid derivatives. A2eotrope data for MMA are shown in Table 5 (8). The solubiUty of MMA in water at 25°C is 1.5%. Water solubiUty of longer alkyl methacrylates ranges from slight to insoluble. Some functionalized esters such as 2-dimethylaniinoethyl methacrylate are miscible and/or hydrolyze. The solubiUty of 2-hydroxypropyl methacrylate in water at 25°C is 13%. Vapor—Hquid equiUbrium (VLE) data have been pubHshed on methanol, methyl methacrylate, and methacrylic acid pairs (9), as have solubiUty data for this ternary system (10). VLE data are also available for methyl methacrylate, methacrylic acid, methyl a-hydroxyisobutyrate, methanol, and water, which are the critical components obtained in the commercially important acetone cyanohydrin route to methyl methacrylate (11). [Pg.242]

Transesterification of methyl methacrylate with the appropriate alcohol is often the preferred method of preparing higher alkyl and functional methacrylates. The reaction is driven to completion by the use of excess methyl methacrylate and by removal of the methyl methacrylate—methanol a2eotrope. A variety of catalysts have been used, including acids and bases and transition-metal compounds such as dialkjitin oxides (57), titanium(IV) alkoxides (58), and zirconium acetoacetate (59). The use of the transition-metal catalysts allows reaction under nearly neutral conditions and is therefore more tolerant of sensitive functionality in the ester alcohol moiety. In addition, transition-metal catalysts often exhibit higher selectivities than acidic catalysts, particularly with respect to by-product ether formation. [Pg.248]

The methyl a-hydroxyisobutyrate produced is dehydrated to MMA and water in two stages. First, the methyl a-hydroxyisobutyrate is vaporized and passed over a modified zeoHte catalyst at ca 240°C. A second reactor containing phosphoric acid is operated at ca 150°C to promote esterification of any methacrylic acid (MAA) formed in the first reactor (74,75). Methanol is co-fed to improve selectivity in each stage. Conversions of methyl a-hydroxyisobutyrate are greater than 99%, with selectivities to MMA near 96%. The reactor effluent is extracted with water to remove methanol and yield cmde MMA. This process has not yet been used on a commercial scale. [Pg.252]

The oxidative dehydration of isobutyric acid [79-31-2] to methacrylic acid is most often carried out over iron—phosphoms or molybdenum—phosphoms based catalysts similar to those used in the oxidation of methacrolein to methacrylic acid. Conversions in excess of 95% and selectivity to methacrylic acid of 75—85% have been attained, resulting in single-pass yields of nearly 80%. The use of cesium-, copper-, and vanadium-doped catalysts are reported to be beneficial (96), as is the use of cesium in conjunction with quinoline (97). Generally the iron—phosphoms catalysts require temperatures in the vicinity of 400°C, in contrast to the molybdenum-based catalysts that exhibit comparable reactivity at 300°C (98). [Pg.252]

Only with propanal are very high conversions (99%) and selectivity (> 98 0) to MMA and MAA possible at this time. Although nearly 95% selective, the highest reported conversions with propionic acid or methyl propionate are only 30—40%. This results in large recycle streams and added production costs. The propanal route suffers from the added expense of the additional step required to oxidize methacrolein to methacrylic acid. [Pg.253]

The first-stage catalysts for the oxidation to methacrolein are based on complex mixed metal oxides of molybdenum, bismuth, and iron, often with the addition of cobalt, nickel, antimony, tungsten, and an alkaU metal. Process optimization continues to be in the form of incremental improvements in catalyst yield and lifetime. Typically, a dilute stream, 5—10% of isobutylene tert-huty alcohol) in steam (10%) and air, is passed over the catalyst at 300—420°C. Conversion is often nearly quantitative, with selectivities to methacrolein ranging from 85% to better than 95% (114—118). Often there is accompanying selectivity to methacrylic acid of an additional 2—5%. A patent by Mitsui Toatsu Chemicals reports selectivity to methacrolein of better than 97% at conversions of 98.7% for a yield of methacrolein of nearly 96% (119). [Pg.253]

The oxidation of methacrolein to methacrylic acid is most often performed over a phosphomolybdic acid-based catalyst, usually with copper, vanadium, and a heavy alkaU metal added. Arsenic and antimony are other common dopants. Conversions of methacrolein range from 85—95%, with selectivities to methacrylic acid of 85—95%. Although numerous catalyst improvements have been reported since the 1980s (120—123), the highest claimed yield of methacryhc acid (86%) is still that described in a 1981 patent to Air Products (124). [Pg.253]

Several variations of the above process are practiced. In the Sumitomo-Nippon Shokubai process, the effluent from the first-stage reactor containing methacrolein and methacrylic acid is fed directiy to the second-stage oxidation without isolation or purification (125,126). In this process, overall yields are maximized by optimizing selectivity to methacrolein plus methacrylic acid in the first stage. Conversion of isobutjiene or tert-huty alcohol must be high because no recycling of material is possible. In another variation, Asahi Chemical has reported the oxidative esterification of methacrolein directiy to MMA in 80% yield without isolation of the intermediate MAA (127,128). [Pg.253]

Plastic Sheet. Poly(methyl methacrylate) plastic sheet is manufactured in a wide variety of types, including cleat and colored transparent, cleat and colored translucent, and colored semiopaque. Various surface textures ate also produced. Additionally, grades with improved weatherabiUty (added uv absorbers), mat resistance, crazing resistance, impact resistance, and flame resistance ate available. Selected physical properties of poly(methyl methacrylate) sheet ate Hsted in Table 12 (102). [Pg.269]

Acrylic Polymers. Although considerable information on the plasticization of acryUc resins is scattered throughout journal and patent hterature, the subject is compHcated by the fact that acryUc resins constitute a large family of polymers rather than a single polymeric species. An infinite variation in physical properties may be obtained through copolymerization of two or more acryUc monomers selected from the available esters of acryUc and methacryhc acid (30) (see Acrylic esterpolya rs Methacrylic acid and derivatives). [Pg.129]

Monomers such as methyl methacrylate [80-62-6] are often used in combination with styrene to modify refractive index and improve uv resistance. Vinyltoluene [25013-15-4] and diaHyl phthalate [131-17-9] are employed as monomers in selective mol ding compositions for thermal improvements. [Pg.314]

Monomers such as aUyl methacrylate and diaUyl maleate have appUcations as cross-linking and branching agents selected especiaUy for the different reactivities of their double bonds (90) some physical properties are given in Table 8. These esters are colorless Uquids soluble in most organic Uquids but htde soluble in water DAM and DAF have pungent odors and are skin irritants. [Pg.87]

Due to the fact that the primary structure of the Ultrahydrogel packing is a hydroxylated methacrylate, the interaction of many polar polymers with the packing is minimized easily. The presence of small amounts of anionic functions on the surface of the polymer usually requires the addition of salt to the mobile phase. A common mobile phase for many applications is 0.1 M NaN03. Detailed eluent selection guidelines are given in Table 11.6. [Pg.344]

In this stage of the investigation, poly(methyl methacrylates) (PMMAs) were selected as the polymeric probes of intermediate polarity. Polymers of medium broad molar mass distribution and of low tacticity (14) were a gift of Dr. W. Wunderlich of Rohm Co., Darmstadt, Germany. Their molar masses ranged from 1.6 X 10" to 6.13 X 10 g-mol. For some comparative tests, narrow polystyrene standards from Pressure Co. (Pittsburgh, PA) were used. [Pg.448]

An effective method of NVF chemical modification is graft copolymerization [34,35]. This reaction is initiated by free radicals of the cellulose molecule. The cellulose is treated with an aqueous solution with selected ions and is exposed to a high-energy radiation. Then, the cellulose molecule cracks and radicals are formed. Afterwards, the radical sites of the cellulose are treated with a suitable solution (compatible with the polymer matrix), for example vinyl monomer [35] acrylonitrile [34], methyl methacrylate [47], polystyrene [41]. The resulting copolymer possesses properties characteristic of both fibrous cellulose and grafted polymer. [Pg.796]

Advanced development of ion-selective films has been attempted by radiation grafting of methacrylic acid on polyethylene films, and combination of this with cellophane are also being tested. Polyamide fleece impregnated with regenerated cellulose, is another option for zinc-silver oxide batteries. [Pg.287]

Transfer constants of the methacrylate macromonomers in MMA polymerization do not depend on the ester group but are slightly higher for MAA trimer. Compounds 72 and 73 are derived from the MMA trimer (67) by selective hydrolysis or hydrolysis and reesterification respectively. They offer a route to telechelic polymers. [Pg.306]

Kochi (1956a, 1956b) and Dickerman et al. (1958, 1959) studied the kinetics of the Meerwein reaction of arenediazonium salts with acrylonitrile, styrene, and other alkenes, based on initial studies on the Sandmeyer reaction. The reactions were found to be first-order in diazonium ion and in cuprous ion. The relative rates of the addition to four alkenes (acrylonitrile, styrene, methyl acrylate, and methyl methacrylate) vary by a factor of only 1.55 (Dickerman et al., 1959). This result indicates that the aryl radical has a low selectivity. The kinetic data are consistent with the mechanism of Schemes 10-52 to 10-56, 10-58 and 10-59. This mechanism was strongly corroborated by Galli s work on the Sandmeyer reaction more than twenty years later (1981-89). [Pg.250]

In this short initial communication we wish to describe a general purpose continuous-flow stirred-tank reactor (CSTR) system which incorporates a digital computer for supervisory control purposes and which has been constructed for use with radical and other polymerization processes. The performance of the system has been tested by attempting to control the MWD of the product from free-radically initiated solution polymerizations of methyl methacrylate (MMA) using oscillatory feed-forward control strategies for the reagent feeds. This reaction has been selected for study because of the ease of experimentation which it affords and because the theoretical aspects of the control of MWD in radical polymerizations has attracted much attention in the scientific literature. [Pg.253]

In order to be successful as part of a medical device a polymer has to resist both biological rejection by the patient s body and degradation. The human body is an enviromnent which is simultaneously hostile and sensitive, so that materials for application in medicine must be carefully selected. The essential requirement is that these materials are biocompafible with the particular part of the body in which they are placed. The extent to which polymers fulfil this requirement of biocompafibility depends partly on the properties of the polymer and partly on the location in which they are expected to perform. For example the requirements for blood biocompafibility are stringent since blood coagulation may be triggered by a variety of materials. By contrast, the requirements for materials to be used in replacement joints in orthopaedic surgery are less severe and materials as diverse as poly (methyl methacrylate) and stainless steel can be used with minimal adverse reaction from the body. [Pg.146]

Interestingly, Reggelin et al. [147] prepared helical chiral polymers by helix-sense selective anionic polymerization of methacrylates, using an asymmetric base mixture as initiator (Scheme 61). [Pg.142]


See other pages where Selectivity methacrylate is mentioned: [Pg.137]    [Pg.137]    [Pg.461]    [Pg.468]    [Pg.388]    [Pg.329]    [Pg.245]    [Pg.75]    [Pg.77]    [Pg.348]    [Pg.358]    [Pg.186]    [Pg.309]    [Pg.220]    [Pg.762]    [Pg.169]    [Pg.423]    [Pg.132]    [Pg.358]    [Pg.27]    [Pg.322]    [Pg.389]   
See also in sourсe #XX -- [ Pg.484 ]




SEARCH



Methyl methacrylate, selective

© 2024 chempedia.info